Efficient Silicon Solar Cells through Organic Self-Assembled Monolayers as Electron Selective Contacts

被引:14
作者
Prasetio, Adi [1 ,2 ]
Pradhan, Rakesh R. [1 ,3 ]
Dally, Pia [1 ]
Ghadiyali, Mohammed [1 ]
Azmi, Randi [1 ]
Schwingenschlogl, Udo [1 ]
Allen, Thomas G. [1 ]
De Wolf, Stefaan [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, KAUST Solar Ctr KSC, Phys Sci & Engn Div PSE, Thuwal 239556900, Saudi Arabia
[2] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Mat Sci & Engn MSE, Thuwal 239556900, Saudi Arabia
[3] King Abdullah Univ Sci & Technol KAUST, Phys Sci & Engn Div PSE, Appl Phys AP, Thuwal 239556900, Saudi Arabia
关键词
crystalline silicon solar cells; electron-selective contact; organic materials; self-assembled monolayers; solution-processed; ENERGY-LEVEL ALIGNMENT; METAL; EXTRACTION; OXIDE;
D O I
10.1002/aenm.202303705
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Effective charge carrier-selective contacts are a crucial component of high-performance crystalline silicon (c-Si) solar cells. Organic materials deposited via self-assembly on the c-Si surface are promising candidates for simplified, scalable, and cost-effective processing of charge extraction layers. This study investigates the application of nPACz self-assembled monolayers (SAMs), based on carbazole and phosphonic acid groups, where n (= 2, 4, or 6) is the aliphatic chain length, to facilitate electron extraction in c-Si solar cells by tuning the work function of aluminum (Al) at the rear contact. So far, these SAM molecules are mainly applied as the hole-selective layer in state-of-the-art perovskite and organic solar cells, via anchoring on a metal oxide electrode. Here, by inserting 2PACz between amorphous silicon passivated c-Si and Al, an electron-selective contact with a contact resistivity of 65 m omega cm2 is achieved and a power conversion efficiency of 21.4% with an open-circuit voltage of 725 mV and a fill factor of 79.2% is demonstrated. Although the 2PACz displays some instability in this study, its initial performance is comparable to those achieved with conventionally used n-type amorphous silicon. This study highlights the potential of solution-processable organic SAMs in forming carrier-selective contacts for c-Si heterojunction solar cells. [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) self-assembled monolayers (SAMs) are utilized as electron-selective layers in crystalline silicon (c-Si) solar cells. These layers form chemical bonds with the silicon surface, aligning the phosphonic acid group towards the c-Si and the carbazole group towards the alumunium (Al) electrode. This alignment creates a dipole moment, facilitating electron extraction towards the Al, and enabling efficiencies of 21.4%.image
引用
收藏
页数:10
相关论文
共 75 条
[1]   Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells [J].
Al-Ashouri, Amran ;
Magomedov, Artiom ;
Ross, Marcel ;
Jost, Marko ;
Talaikis, Martynas ;
Chistiakova, Ganna ;
Bertram, Tobias ;
Marquez, Jose A. ;
Kohnen, Eike ;
Kasparavicius, Ernestas ;
Levcenco, Sergiu ;
Gil-Escrig, Lidon ;
Hages, Charles J. ;
Schlatmann, Rutger ;
Rech, Bernd ;
Malinauskas, Tadas ;
Unold, Thomas ;
Kaufmann, Christian A. ;
Korte, Lars ;
Niaura, Gediminas ;
Getautis, Vytautas ;
Albrecht, Steve .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (11) :3356-3369
[2]   Applications of Self-Assembled Monolayers for Perovskite Solar Cells Interface Engineering to Address Efficiency and Stability [J].
Ali, Fawad ;
Roldan-Carmona, Cristina ;
Sohail, Muhammad ;
Nazeeruddin, Mohammad Khaja .
ADVANCED ENERGY MATERIALS, 2020, 10 (48)
[3]   Passivating contacts for crystalline silicon solar cells [J].
Allen, Thomas G. ;
Bullock, James ;
Yang, Xinbo ;
Javey, Ali ;
De Wolf, Stefaan .
NATURE ENERGY, 2019, 4 (11) :914-928
[4]   A Low Resistance Calcium/Reduced Titania Passivated Contact for High Efficiency Crystalline Silicon Solar Cells [J].
Allen, Thomas G. ;
Bullock, James ;
Jeangros, Quentin ;
Samundsett, Christian ;
Wan, Yimao ;
Cui, Jie ;
Hessler-Wyser, Aicha ;
De Wolf, Stefaan ;
Javey, Ali ;
Cuevas, Andres .
ADVANCED ENERGY MATERIALS, 2017, 7 (12)
[5]   Calcium contacts to n-type crystalline silicon solar cells [J].
Allen, Thomas G. ;
Bullock, James ;
Zheng, Peiting ;
Vaughan, Ben ;
Barr, Matthew ;
Wan, Yimao ;
Samundsett, Christian ;
Walter, Daniel ;
Javey, Ali ;
Cuevas, Andres .
PROGRESS IN PHOTOVOLTAICS, 2017, 25 (07) :636-644
[6]   Chemical Trends in the Work Function of Modified Si(111) Surfaces: A DFT Study [J].
Arefi, Hadi H. ;
Fagas, Giorgos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (26) :14346-14354
[7]   Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions [J].
Azmi, Randi ;
Ugur, Esma ;
Seitkhan, Akmaral ;
Aljamaan, Faisal ;
Subbiah, Anand S. ;
Liu, Jiang ;
Harrison, George T. ;
Nugraha, Mohamad, I ;
Eswaran, Mathan K. ;
Babics, Maxime ;
Chen, Yuan ;
Xu, Fuzong ;
Allen, Thomas G. ;
Rehman, Atteq Ur ;
Wang, Chien-Lung ;
Anthopoulos, Thomas D. ;
Schwingenschlogl, Udo ;
De Bastiani, Michele ;
Aydin, Erkan ;
De Wolf, Stefaan .
SCIENCE, 2022, 376 (6588) :73-+
[8]   Silicon heterojunction solar cell with passivated hole selective MoOx contact [J].
Battaglia, Corsin ;
de Nicolas, Silvia Martin ;
De Wolf, Stefaan ;
Yin, Xingtian ;
Zheng, Maxwell ;
Ballif, Christophe ;
Javey, Ali .
APPLIED PHYSICS LETTERS, 2014, 104 (11)
[9]   Lithium Fluoride Based Electron Contacts for High Efficiency n-Type Crystalline Silicon Solar Cells [J].
Bullock, James ;
Zheng, Peiting ;
Jeangros, Quentin ;
Tosun, Mahmut ;
Hettick, Mark ;
Sutter-Fella, Carolin M. ;
Wan, Yimao ;
Allen, Thomas ;
Yan, Di ;
Macdonald, Daniel ;
De Wolf, Stefaan ;
Hessler-Wyser, Aicha ;
Cuevas, Andres ;
Javey, Ali .
ADVANCED ENERGY MATERIALS, 2016, 6 (14)
[10]   Efficient silicon solar cells with dopant-free asymmetric heterocontacts [J].
Bullock, James ;
Hettick, Mark ;
Geissbuhler, Jonas ;
Ong, Alison J. ;
Allen, Thomas ;
Sutter-Fella, Carolin M. ;
Chen, Teresa ;
Ota, Hiroki ;
Schaler, Ethan W. ;
De Wolf, Stefaan ;
Ballif, Christophe ;
Cuevas, Andres ;
Javey, Ali .
NATURE ENERGY, 2016, 1