Positron Emission Tomography-Derived Radiomics and Artificial Intelligence in Multiple Myeloma: State-of-the-Art

被引:2
|
作者
Manco, Luigi [1 ]
Albano, Domenico [2 ,3 ]
Urso, Luca [4 ]
Arnaboldi, Mattia [5 ]
Castellani, Massimo [5 ]
Florimonte, Luigia [5 ]
Guidi, Gabriele [6 ]
Turra, Alessandro [1 ]
Castello, Angelo [5 ]
Panareo, Stefano [7 ]
机构
[1] Azienda USL Ferrara, Med Phys Unit, I-45100 Ferrara, Italy
[2] Univ Brescia, Nucl Med Dept, I-25123 Brescia, Italy
[3] ASST Spedali Civili Brescia, I-25123 Brescia, Italy
[4] Univ Ferrara, Dept Translat Med, I-44121 Ferrara, Italy
[5] Osped Maggiore Policlin, Fdn IRCCS Ca Granda, Nucl Med Unit, I-20122 Milan, Italy
[6] Univ Hosp Modena, Med Phys Unit, I-41125 Modena, Italy
[7] Univ Hosp Modena, Dept Oncol & Hematol, Nucl Med Unit, Via Pozzo 71, I-41124 Modena, Italy
关键词
radiomics; artificial intelligence; AI; machine learning; deep learning; multiple myeloma; positron emission tomography; PET; PET/CT; DISEASE; DIAGNOSIS; CRITERIA; PROPOSAL; IMAGES;
D O I
10.3390/jcm12247669
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Multiple myeloma (MM) is a heterogeneous neoplasm accounting for the second most prevalent hematologic disorder. The identification of noninvasive, valuable biomarkers is of utmost importance for the best patient treatment selection, especially in heterogeneous diseases like MM. Despite molecular imaging with positron emission tomography (PET) has achieved a primary role in the characterization of MM, it is not free from shortcomings. In recent years, radiomics and artificial intelligence (AI), which includes machine learning (ML) and deep learning (DL) algorithms, have played an important role in mining additional information from medical images beyond human eyes' resolving power. Our review provides a summary of the current status of radiomics and AI in different clinical contexts of MM. A systematic search of PubMed, Web of Science, and Scopus was conducted, including all the articles published in English that explored radiomics and AI analyses of PET/CT images in MM. The initial results have highlighted the potential role of such new features in order to improve the clinical stratification of MM patients, as well as to increase their clinical benefits. However, more studies are warranted before these approaches can be implemented in clinical routines.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Application of Artificial Intelligence in Predicting Earthquakes: State-of-the-Art and Future Challenges
    Al Banna, Md. Hasan
    Abu Taher, Kazi
    Kaiser, M. Shamim
    Mahmud, Mufti
    Rahman, Md. Sazzadur
    Hosen, A. S. M. Sanwar
    Cho, Gi Hwan
    IEEE ACCESS, 2020, 8 : 192880 - 192923
  • [32] Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma
    Haznedar, Rauf
    Aki, Sahika Z.
    Akdemir, Ozgur U.
    Ozkurt, Zubeyde N.
    Ceneli, Ozcan
    Yagci, Munci
    Sucak, Gulsan T.
    Unlu, Mustafa
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2011, 38 (06) : 1046 - 1053
  • [33] 18F-fluorodesoxyglucose positron emission tomography/computed tomography in extramedullary multiple myeloma
    Lissarrague, Eugenia
    Sol Fregeiro, Maria
    Binstok, Yemile
    Barla, Camila
    Cavani, Manuel
    Frachia, Felipe
    Ranero, Sabrina
    Servente, Liliana
    Riva, Eloisa
    REVISTA MEDICA DE CHILE, 2022, 150 (02) : 199 - 205
  • [34] State-of-the-art of bone marrow imaging in multiple myeloma
    Marti-Bonmati, Luis
    Ramirez-Fuentes, Cristina
    Alberich-Bayarri, Angel
    Ruiz-Llorca, Cristina
    CURRENT OPINION IN ONCOLOGY, 2015, 27 (06) : 540 - 550
  • [35] Radiomics and Artificial Intelligence Landscape for [18F]FDG PET/CT in Multiple Myeloma
    Sachpekidis, Christos
    Goldschmidt, Hartmut
    Edenbrandt, Lars
    Dimitrakopoulou-Strauss, Antonia
    SEMINARS IN NUCLEAR MEDICINE, 2025, 55 (03) : 387 - 395
  • [36] Radiological imaging in multiple myeloma: review of the state-of-the-art
    Francesca Di Giuliano
    Eliseo Picchi
    Massimo Muto
    Antonello Calcagni
    Valentina Ferrazzoli
    Valerio Da Ros
    Silvia Minosse
    Agostino Chiaravalloti
    Francesco Garaci
    Roberto Floris
    Mario Muto
    Neuroradiology, 2020, 62 : 905 - 923
  • [37] Incremental prognostic value of positron emission tomography-derived myocardial flow reserve in patients with and without diabetes mellitus
    Aljizeeri, Ahmed
    Ahmed, Ahmed Ibrahim
    Suliman, Ihab
    Alfaris, Mousa Alali
    Elneama, Awadelkarim
    Al-Mallah, Mouaz H.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2023, 24 (05) : 563 - 571
  • [38] Positron Emission Tomography (PET) Radiopharmaceuticals in Multiple Myeloma
    Sachpekidis, Christos
    Goldschmidt, Hartmut
    Dimitrakopoulou-Strauss, Antonia
    MOLECULES, 2020, 25 (01):
  • [39] Change Detection Based on Artificial Intelligence: State-of-the-Art and Challenges
    Shi, Wenzhong
    Zhang, Min
    Zhang, Rui
    Chen, Shanxiong
    Zhan, Zhao
    REMOTE SENSING, 2020, 12 (10)
  • [40] Application of Artificial Intelligence in Glacier Studies: A State-of-the-Art Review
    Nurakynov, Serik
    Merekeyev, Aibek
    Baygurin, Zhaksybek
    Sydyk, Nurmakhambet
    Akhmetov, Bakytzhan
    WATER, 2024, 16 (16)