Deformation of algebras associated with group cocycles

被引:2
作者
Yamashita, Makoto [1 ,2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Matemat, Rome, Italy
[2] Univ Oslo, Dept Math, POB 1053 Blindern, N-0316 Oslo, Norway
关键词
Deformation; Fell bundle; K-theory; TWISTED CROSSED-PRODUCTS; BAUM-CONNES CONJECTURE; OPERATOR-ALGEBRAS; QUANTIZATION; AMENABILITY; EXACTNESS; DUALITY;
D O I
10.4171/JNCG/522
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study deformation of algebras with coaction symmetry of reduced algebras of dis-crete groups, where the deformation parameter is given by a continuous family of group 2-cocycles. When the group satisfies the Baum-Connes conjecture with coefficients, we obtain an isomor-phism of K-groups of the deformed algebras. This extends both the theta-deformation of Rieffel on Tn-actions, and a recent result of Echterhoff, Luck, Phillips, and Walters on the K-groups on the twisted group algebras.
引用
收藏
页码:1145 / 1166
页数:22
相关论文
共 33 条
[1]  
Abadie B, 2001, MATH SCAND, V89, P135
[2]   Amenability and exactness for dynamical systems and their C*-algebras [J].
Anantharaman-Delaroche, C .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 354 (10) :4153-4178
[3]   Deformation of operator algebras by Borel cocycles [J].
Bhowmick, Jyotishman ;
Neshveyev, Sergey ;
Sangha, Amandip .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (06) :983-1001
[4]  
Brown N.P., 2008, GRADUATE STUDIES MAT, V88
[5]  
CONNES A, 1985, PUBL MATH-PARIS, P257
[6]   ACTIONS OF MONOIDALLY EQUIVALENT COMPACT QUANTUM GROUPS AND APPLICATIONS TO PROBABILISTIC BOUNDARIES [J].
De Rijdt, An ;
Vander Vennet, Nikolas .
ANNALES DE L INSTITUT FOURIER, 2010, 60 (01) :169-216
[7]  
Echterhoff S, 2002, MATH SCAND, V90, P267
[8]   The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(Z) [J].
Echterhoff, Siegfried ;
Lueck, Wolfgang ;
Phillips, N. Christopher ;
Walters, Samuel .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2010, 639 :173-221
[9]  
Echterhoff S, 2009, J NONCOMMUT GEOM, V3, P377
[10]  
Exel R, 1997, J REINE ANGEW MATH, V492, P41