A posteriori error analysis and adaptivity for a VEM discretization of the Navier-Stokes equations

被引:0
作者
Canuto, Claudio [1 ]
Rosso, Davide [1 ]
机构
[1] Politecn Torino, Dept Math Sci, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
A posteriori estimator; Adaptivity; Virtual element method; Navier-Stokes equations; Computational fluid dynamics; VIRTUAL ELEMENT;
D O I
10.1007/s10444-023-10081-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the virtual element method (VEM) introduced by Beirao da Veiga et al. in 2016 for the numerical solution of the steady, incompressible Navier-Stokes equations; the method has arbitrary order k >= 2 and guarantees divergence-free velocities. For such discretization, we develop a residual-based a posteriori error estimator, which is a combination of standard terms in VEM analysis (residual terms, data oscillation, and VEM stabilization), plus some other terms originated by the VEM discretization of the nonlinear convective term. We show that a linear combination of the velocity and pressure errors is upper bounded by a multiple of the estimator (reliability). We also establish some efficiency results, involving lower bounds of the error. Some numerical tests illustrate the performance of the estimator and of its components while refining the mesh uniformly, yielding the expected decay rate. At last, we apply an adaptive mesh refinement strategy to the computation of the low-Reynolds flow around a square cylinder inside a channel.
引用
收藏
页数:27
相关论文
共 17 条
  • [1] A posteriori error estimation in finite element analysis
    Ainsworth, M
    Oden, JT
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) : 1 - 88
  • [2] Equilibrium analysis of an immersed rigid leaflet by the virtual element method
    Beirao da Veiga, L.
    Canuto, C.
    Nochetto, R. H.
    Vacca, G.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (07) : 1323 - 1372
  • [3] Accurate computations of the laminar flow past a square cylinder based on two different methods: lattice-Boltzmann and finite-volume
    Breuer, M
    Bernsdorf, J
    Zeiser, T
    Durst, F
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2000, 21 (02) : 186 - 196
  • [4] A posteriori error estimates for the virtual element method
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Pryer, Tristan
    Sutton, Oliver J.
    [J]. NUMERISCHE MATHEMATIK, 2017, 137 (04) : 857 - 893
  • [5] ADAPTIVE VEM: STABILIZATION-FREE A POSTERIORI ERROR ANALYSIS AND CONTRACTION PROPERTY
    DA VEIGA, B. E. I. R. A. O.
    CANUTO, C.
    NOCHETTO, R. H.
    VACCA, G.
    VERANI, M.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2023, 61 (02) : 457 - 494
  • [6] VIRTUAL ELEMENTS FOR THE NAVIER-STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, L. Beirao
    Lovadina, C.
    Vacca, G.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (03) : 1210 - 1242
  • [7] RESIDUAL A POSTERIORI ERROR ESTIMATION FOR THE VIRTUAL ELEMENT METHOD FOR ELLIPTIC PROBLEMS
    da Veiga, L. Beirao
    Manzini, G.
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (02): : 577 - 599
  • [8] The Hitchhiker's Guide to the Virtual Element Method
    da Veiga, L. Beirao
    Brezzi, F.
    Marini, L. D.
    Russo, A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (08) : 1541 - 1573
  • [9] BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS
    da Veiga, L. Beirao
    Brezzi, F.
    Cangiani, A.
    Manzini, G.
    Marini, L. D.
    Russo, A.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) : 199 - 214
  • [10] DIVERGENCE FREE VIRTUAL ELEMENTS FOR THE STOKES PROBLEM ON POLYGONAL MESHES
    da Veiga, Lourenco Beirao
    Lovadina, Carlo
    Vacca, Giuseppe
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2017, 51 (02): : 509 - 535