Single-subject Multi-contrast MRI Super-resolution via Implicit Neural Representations

被引:12
作者
McGinnis, Julian [1 ,2 ,3 ]
Shit, Suprosanna [1 ,4 ,5 ]
Li, Hongwei Bran [5 ]
Sideri-Lampretsa, Vasiliki [1 ]
Graf, Robert [1 ,4 ]
Dannecker, Maik [1 ]
Pan, Jiazhen [1 ]
Stolt-Anso, Nil [1 ]
Muehlau, Mark [2 ,3 ]
Kirschke, Jan S. [4 ]
Rueckert, Daniel [1 ,6 ]
Wiestler, Benedikt [4 ]
机构
[1] Tech Univ Munich, Sch Computat Informat & Technol, Munich, Germany
[2] Tech Univ Munich, TUM Neuroimaging Ctr, Munich, Germany
[3] Tech Univ Munich, Dept Neurol, Munich, Germany
[4] Tech Univ Munich, Dept Neuroradiol, Munich, Germany
[5] Univ Zurich, Dept Quantitat Biomed, Zurich, Switzerland
[6] Imperial Coll London, Dept Comp, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VIII | 2023年 / 14227卷
基金
欧洲研究理事会;
关键词
Multi-contrast Super-resolution; Implicit Neural Representations; Mutual Information; IMAGE SUPERRESOLUTION; RECONSTRUCTION;
D O I
10.1007/978-3-031-43993-3_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clinical routine and retrospective cohorts commonly include multi-parametric Magnetic Resonance Imaging; however, they are mostly acquired in different anisotropic 2D views due to signal-to-noise-ratio and scan-time constraints. Thus acquired views suffer from poor out-of-plane resolution and affect downstream volumetric image analysis that typically requires isotropic 3D scans. Combining different views of multi-contrast scans into high-resolution isotropic 3D scans is challenging due to the lack of a large training cohort, which calls for a subject-specific framework. This work proposes a novel solution to this problem leveraging Implicit Neural Representations (INR). Our proposed INR jointly learns two different contrasts of complementary views in a continuous spatial function and benefits from exchanging anatomical information between them. Trained within minutes on a single commodity GPU, our model provides realistic super-resolution across different pairs of contrasts in our experiments with three datasets. Using Mutual Information (MI) as a metric, we find that our model converges to an optimum MI amongst sequences, achieving anatomically faithful reconstruction. (Code is available at: https://github.com/jqmcginnis/multi_contrast_inr/).
引用
收藏
页码:173 / 183
页数:11
相关论文
共 32 条
[11]   Neural Implicit k-Space for Binning-Free Non-Cartesian Cardiac MR Imaging [J].
Huang, Wenqi ;
Li, Hongwei Bran ;
Pan, Jiazhen ;
Cruz, Gastao ;
Rueckert, Daniel ;
Hammernik, Kerstin .
INFORMATION PROCESSING IN MEDICAL IMAGING, IPMI 2023, 2023, 13939 :548-560
[12]   Automated brain extraction of multisequence MRI using artificial neural networks [J].
Isensee, Fabian ;
Schell, Marianne ;
Pflueger, Irada ;
Brugnara, Gianluca ;
Bonekamp, David ;
Neuberger, Ulf ;
Wick, Antje ;
Schlemmer, Heinz-Peter ;
Heiland, Sabine ;
Wick, Wolfgang ;
Bendszus, Martin ;
Maier-Hein, Klaus H. ;
Kickingereder, Philipp .
HUMAN BRAIN MAPPING, 2019, 40 (17) :4952-4964
[13]   Transformer-empowered Multi-scale Contextual Matching and Aggregation for Multi-contrast MRI Super-resolution [J].
Li, Guangyuan ;
Lv, Jun ;
Tian, Yapeng ;
Dou, Qi ;
Wang, Chengyan ;
Xu, Chenliang ;
Qin, Jing .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :20604-20613
[14]   Multi-Contrast Super-Resolution MRI Through a Progressive Network [J].
Lyu, Qing ;
Shan, Hongming ;
Steber, Cole ;
Helis, Corbin ;
Whitlow, Chris ;
Chan, Michael ;
Wang, Ge .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (09) :2738-2749
[15]   MRI Superresolution Using Self-Similarity and Image Priors [J].
Manjon, Jose V. ;
Coupe, Pierrick ;
Buades, Antonio ;
Collins, D. Louis ;
Robles, Montserrat .
INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2010, 2010
[16]   The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [J].
Menze, Bjoern H. ;
Jakab, Andras ;
Bauer, Stefan ;
Kalpathy-Cramer, Jayashree ;
Farahani, Keyvan ;
Kirby, Justin ;
Burren, Yuliya ;
Porz, Nicole ;
Slotboom, Johannes ;
Wiest, Roland ;
Lanczi, Levente ;
Gerstner, Elizabeth ;
Weber, Marc-Andre ;
Arbel, Tal ;
Avants, Brian B. ;
Ayache, Nicholas ;
Buendia, Patricia ;
Collins, D. Louis ;
Cordier, Nicolas ;
Corso, Jason J. ;
Criminisi, Antonio ;
Das, Tilak ;
Delingette, Herve ;
Demiralp, Cagatay ;
Durst, Christopher R. ;
Dojat, Michel ;
Doyle, Senan ;
Festa, Joana ;
Forbes, Florence ;
Geremia, Ezequiel ;
Glocker, Ben ;
Golland, Polina ;
Guo, Xiaotao ;
Hamamci, Andac ;
Iftekharuddin, Khan M. ;
Jena, Raj ;
John, Nigel M. ;
Konukoglu, Ender ;
Lashkari, Danial ;
Mariz, Jose Antonio ;
Meier, Raphael ;
Pereira, Sergio ;
Precup, Doina ;
Price, Stephen J. ;
Raviv, Tammy Riklin ;
Reza, Syed M. S. ;
Ryan, Michael ;
Sarikaya, Duygu ;
Schwartz, Lawrence ;
Shin, Hoo-Chang .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2015, 34 (10) :1993-2024
[17]   NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis [J].
Ben Mildenhall ;
Srinivasan, Pratul P. ;
Tancik, Matthew ;
Barron, Jonathan T. ;
Ramamoorthi, Ravi ;
Ng, Ren .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :405-421
[18]   DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation [J].
Park, Jeong Joon ;
Florence, Peter ;
Straub, Julian ;
Newcombe, Richard ;
Lovegrove, Steven .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :165-174
[19]   Super-resolution methods in MRI: Can they improve the trade-off between resolution, signal-to-noise ratio, and acquisition time? [J].
Plenge, Esben ;
Poot, Dirk H. J. ;
Bernsen, Monique ;
Kotek, Gyula ;
Houston, Gavin ;
Wielopolski, Piotr ;
van der Weerd, Louise ;
Niessen, Wiro J. ;
Meijering, Erik .
MAGNETIC RESONANCE IN MEDICINE, 2012, 68 (06) :1983-1993
[20]  
Rahman S. U., 2010, P SOC PHOTO-OPT INS, P187