DOMAIN INVARIANT REGULARIZATION BY DISENTANGLING CONTENT AND STYLE FEATURES FOR VISUAL DOMAIN GENERALIZATION

被引:1
|
作者
Gholami, Behnam [1 ]
El-Khamy, Mostafa [1 ]
Song, Kee-Bong [1 ]
机构
[1] Samsung Semicond Inc, SOC Cellular & Multimedia Lab R&D, San Diego, CA 92121 USA
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Domain Generalization; Disentanglement Representation; Image CLassification;
D O I
10.1109/ICIP49359.2023.10222730
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, taking the advantage of multiple source domains, we propose a novel approach for visual Domain Generalization (DG). The three key ideas underlying our formulation are (1) leveraging disentangled representations of the images to define different factors of variations, (2) generating perturbed images by changing such factors composing the representations of the images, (3) enforcing the learner (classifier) to be invariant to such changes in the images. We demonstrate the effectiveness of our approach on several widely used datasets for the domain generalization problem, on all of which we achieve competitive results with state-of-the-art models.
引用
收藏
页码:1525 / 1529
页数:5
相关论文
共 50 条
  • [21] Latent Feature Disentanglement for Visual Domain Generalization
    Gholami, Behnam
    El-Khamy, Mostafa
    Song, Kee-Bong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 5751 - 5763
  • [22] Knowledge Distillation-Based Domain-Invariant Representation Learning for Domain Generalization
    Niu, Ziwei
    Yuan, Junkun
    Ma, Xu
    Xu, Yingying
    Liu, Jing
    Chen, Yen-Wei
    Tong, Ruofeng
    Lin, Lanfen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 245 - 255
  • [23] Exploring Explicitly Disentangled Features for Domain Generalization
    Li, Jingwei
    Li, Yuan
    Wang, Huanjie
    Liu, Chengbao
    Tan, Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2023, 33 (11) : 6360 - 6373
  • [24] Uncovering and mitigating spurious features in domain generalization
    Karimi, Saeed
    Dibeklioglu, Hamdi
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2024, 32 (02) : 320 - 337
  • [25] Adversarial Invariant Feature Learning with Accuracy Constraint for Domain Generalization
    Akuzawa, Kei
    Iwasawa, Yusuke
    Matsuo, Yutaka
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 315 - 331
  • [26] Deep Domain Generalization via Conditional Invariant Adversarial Networks
    Li, Ya
    Tian, Xinmei
    Gong, Mingming
    Liu, Yajing
    Liu, Tongliang
    Zhang, Kun
    Tao, Dacheng
    COMPUTER VISION - ECCV 2018, PT 15, 2018, 11219 : 647 - 663
  • [27] RELEVANT AND INVARIANT FEATURE SELECTION OF HYPERSPECTRAL IMAGES FOR DOMAIN GENERALIZATION
    Persello, Claudio
    Bruzzone, Lorenzo
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3562 - 3565
  • [28] Domain Generalization for Time-Series Forecasting via Extended Domain-Invariant Representations
    Shi, Yunchuan
    Li, Wei
    Zomaya, Albert Y.
    2024 IEEE ANNUAL CONGRESS ON ARTIFICIAL INTELLIGENCE OF THING, AIOT 2024, 2024, : 110 - 116
  • [29] Visual representations with texts domain generalization for semantic segmentation
    Yue, Wanlin
    Zhou, Zhiheng
    Cao, Yinglie
    Wu, Weikang
    APPLIED INTELLIGENCE, 2023, 53 (24) : 30069 - 30079
  • [30] Visual representations with texts domain generalization for semantic segmentation
    Wanlin Yue
    Zhiheng Zhou
    Yinglie Cao
    Weikang Wu
    Applied Intelligence, 2023, 53 : 30069 - 30079