DOMAIN INVARIANT REGULARIZATION BY DISENTANGLING CONTENT AND STYLE FEATURES FOR VISUAL DOMAIN GENERALIZATION

被引:1
|
作者
Gholami, Behnam [1 ]
El-Khamy, Mostafa [1 ]
Song, Kee-Bong [1 ]
机构
[1] Samsung Semicond Inc, SOC Cellular & Multimedia Lab R&D, San Diego, CA 92121 USA
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Domain Generalization; Disentanglement Representation; Image CLassification;
D O I
10.1109/ICIP49359.2023.10222730
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, taking the advantage of multiple source domains, we propose a novel approach for visual Domain Generalization (DG). The three key ideas underlying our formulation are (1) leveraging disentangled representations of the images to define different factors of variations, (2) generating perturbed images by changing such factors composing the representations of the images, (3) enforcing the learner (classifier) to be invariant to such changes in the images. We demonstrate the effectiveness of our approach on several widely used datasets for the domain generalization problem, on all of which we achieve competitive results with state-of-the-art models.
引用
收藏
页码:1525 / 1529
页数:5
相关论文
共 50 条
  • [1] Domain Generalization for Endoscopic Image Segmentation by Disentangling Style-Content Information and SuperPixel Consistency
    Teevno, Mansoor Ali
    Martinez-Garcia-Pena, Rafael
    Ochoa-Ruiz, Gilberto
    Ali, Sharib
    2024 IEEE 37TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS 2024, 2024, : 383 - 390
  • [2] Grounding Visual Representations with Texts for Domain Generalization
    Min, Seonwoo
    Park, Nokyung
    Kim, Siwon
    Park, Seunghyun
    Kim, Jinkyu
    COMPUTER VISION, ECCV 2022, PT XXXVII, 2022, 13697 : 37 - 53
  • [3] DIFLF: A domain-invariant features learning framework for single-source domain generalization in mammogram classification
    Xie, Wanfang
    Liu, Zhenyu
    Zhao, Litao
    Wang, Meiyun
    Tian, Jie
    Liu, Jiangang
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 261
  • [4] Domain-invariant information aggregation for domain generalization semantic segmentation
    Liao, Muxin
    Tian, Shishun
    Zhang, Yuhang
    Hua, Guoguang
    Zou, Wenbin
    Li, Xia
    NEUROCOMPUTING, 2023, 546
  • [5] Learning Domain-Invariant Representations from Text for Domain Generalization
    Zhang, Huihuang
    Hu, Haigen
    Chen, Qi
    Zhou, Qianwei
    Jiang, Mingfeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 118 - 129
  • [6] Gradient-aware domain-invariant learning for domain generalization
    Hou, Feng
    Zhang, Yao
    Liu, Yang
    Yuan, Jin
    Zhong, Cheng
    Zhang, Yang
    Shi, Zhongchao
    Fan, Jianping
    He, Zhiqiang
    MULTIMEDIA SYSTEMS, 2025, 31 (01)
  • [7] Style Normalization and Restitution for Domain Generalization and Adaptation
    Jin, Xin
    Lan, Cuiling
    Zeng, Wenjun
    Chen, Zhibo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3636 - 3651
  • [8] Hierarchical Invariant Learning for Domain Generalization Recommendation
    Zhang, Zeyu
    Gao, Heyang
    Yang, Hao
    Chen, Xu
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 3470 - 3479
  • [9] Style-Hallucinated Dual Consistency Learning: A Unified Framework for Visual Domain Generalization
    Yuyang Zhao
    Zhun Zhong
    Na Zhao
    Nicu Sebe
    Gim Hee Lee
    International Journal of Computer Vision, 2024, 132 : 837 - 853
  • [10] Style-Hallucinated Dual Consistency Learning: A Unified Framework for Visual Domain Generalization
    Zhao, Yuyang
    Zhong, Zhun
    Zhao, Na
    Sebe, Nicu
    Lee, Gim Hee
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (03) : 837 - 853