INVESTIGATING THE EFFECTS OF AUTOCORRELATION IN DATASET CONSTRUCTION ON TREE SPECIES CLASSIFICATION USING FIELD AND AIRBORNE HYPERSPECTRAL DATA

被引:0
|
作者
Gimenez, Rollin [1 ,2 ]
Berseille, Olivier [2 ]
Hedacq, Remy [3 ]
Riviere, Thomas [1 ]
Elger, Arnaud [2 ]
Ligiero, Leticia [3 ]
Lassalle, Guillaume [2 ]
Dubucq, Dominique
Credoz, Anthony [3 ]
Fabre, Sophie [1 ]
机构
[1] Univ Toulouse, Dept Opt & Techn Associees, Off Natl Etud & Rech Aerospati, F-31055 Toulouse, France
[2] Univ Toulouse, Dept Opt & Techn Associees, Lab Ecol Fonct & Environm, Natl Etud & Rech Aerospati, Ave Agrobiopole, F-31326 Castanet Tolosan, France
[3] TotalEnergies SE, Ctr Sci & Tech Jean Feger CTJF, Ave Larribau, F-64000 Pau, France
关键词
Autocorrelation; machine learning; tree species classification; hyperspectral;
D O I
10.1109/IGARSS52108.2023.10283240
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Spectral measurements provide a non-invasive and efficient means of mapping and monitoring vegetation species over large areas thanks to supervised classification. However, the presence of autocorrelation due to the incorporation of spatial or contextual information in the data can lead to overestimated classification performance and bias the assessment of the generalization power of the classification. This study evaluates this bias by comparing the performance obtained with different methods of training and testing data splitting at leaf and image levels for tree species classification. The average overall accuracies obtained from different data splitting methods differed by up to 30% for airborne image data (ranging from 68% with low correlation to 98% with high correlation) and 16% for field data (ranging from 80% to 96%). These differences demonstrate the need to consider the autocorrelation impacts for classification purpose.
引用
收藏
页码:3260 / 3263
页数:4
相关论文
共 50 条
  • [1] TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL DATA IN SUBTROPICAL MOUNTAINOUS FOREST
    Jia, Wen
    Pang, Yong
    Meng, Shili
    Ju, Hongbo
    Li, Zengyuan
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 2284 - 2287
  • [2] INDIVIDUAL TREE SPECIES CLASSIFICATION USING AIRBORNE HYPERSPECTRAL IMAGERY AND LIDAR DATA
    Burai, Peter
    Beko, Laszlo
    Lenart, Csaba
    Tomor, Tamas
    Kovacs, Zoltan
    2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [3] Airborne hyperspectral data for the classification of tree species a temperate forests
    Wietecha, Martyna
    Modzelewska, Aneta
    Sterenczak, Krzysztof
    SYLWAN, 2017, 161 (01): : 3 - 17
  • [4] TREE SPECIES CLASSIFICATION BASED ON AIRBORNE LIDAR AND HYPERSPECTRAL DATA
    Lu, Xukun
    Liu, Gang
    Ning, Silan
    Su, Zhonghua
    He, Ze
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2787 - 2790
  • [5] Individual Tree Crown Segmentation and Classification of 13 Tree Species Using Airborne Hyperspectral Data
    Maschler, Julia
    Atzberger, Clement
    Immitzer, Markus
    REMOTE SENSING, 2018, 10 (08)
  • [6] Tree-Species Classification in Subtropical Forests Using Airborne Hyperspectral and LiDAR Data
    Shen, Xin
    Cao, Lin
    REMOTE SENSING, 2017, 9 (11):
  • [7] Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data
    Trier, Oivind Due
    Salberg, Arnt-Borre
    Kermit, Martin
    Rudjord, Oystein
    Gobakken, Terje
    Naesset, Erik
    Aarsten, Dagrun
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01) : 336 - 351
  • [8] Object-Based Tree Species Classification Using Airborne Hyperspectral Images and LiDAR Data
    Wu, Yanshuang
    Zhang, Xiaoli
    FORESTS, 2020, 11 (01):
  • [9] Data Augmentation in Prototypical Networks for Forest Tree Species Classification Using Airborne Hyperspectral Images
    Chen, Long
    Wei, Yuxin
    Yao, Zongqi
    Chen, Erxue
    Zhang, Xiaoli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [10] Urban Tree Species Mapping Using Airborne LiDAR and Hyperspectral Data
    Dian, Yuanyong
    Pang, Yong
    Dong, Yanfang
    Li, Zengyuan
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2016, 44 (04) : 595 - 603