Surfaces in Euclidean 3-space with Maslovian normal bundles

被引:0
作者
Sasahara, Toru [1 ]
机构
[1] Hachinohe Inst Technol, Ctr Liberal Arts & Sci, Div Math, Hachinohe, Aomori 0318501, Japan
来源
BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY | 2025年 / 66卷 / 01期
关键词
Lagrangian submanifolds; Maslovian Lagrangian submanifolds; Normal bundles; LAGRANGIAN SUBMANIFOLDS;
D O I
10.1007/s13366-023-00722-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The normal bundle T-perpendicular to M of a surface M in R-3 can be naturally immersed in C-3 = R-3 x R-3 as a Lagrangian submanifold. Let H denote the mean curvature vector field of T-perpendicular to M in C-3, and let J denote the complex structure of C-3. Then T-perpendicular to M is called Maslovian if H is nowhere zero and J H is a principal direction of the shape operator with respect to H. In this paper, we prove that a surface in R-3 has Maslovian normal bundle if and only if it is a part of a round sphere, a circular cylinder, or a circular cone.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 13 条
[1]   Surfaces in three-dimensional space forms with divergence-free stress-bienergy tensor [J].
Caddeo, R. ;
Montaldo, S. ;
Oniciuc, C. ;
Piu, P. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2014, 193 (02) :529-550
[2]   TWISTER HOLOMORPHIC LAGRANGIAN SURFACES IN THE COMPLEX PROJECTIVE AND HYPERBOLIC PLANES [J].
CASTRO, I ;
URBANO, F .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1995, 13 (01) :59-67
[3]  
Chen B.-Y., 2004, Jpn. J. Math., V30, P227
[4]  
Chen BY, 2021, BEITR ALGEBR GEOM, V62, P251, DOI 10.1007/s13366-020-00541-4
[5]   Curvature inequalities for Lagrangian submanifolds: The final solution [J].
Chen, Bang-Yen ;
Dillen, Franki ;
Van der Veken, Joeri ;
Vrancken, Luc .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2013, 31 (06) :808-819
[6]   Complete classification of biconservative hypersurfaces with diagonalizable shape operator in the Minkowski 4-space [J].
Fu, Yu ;
Turgay, Nurettin Cenk .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (05)
[7]   CALIBRATED GEOMETRIES [J].
HARVEY, R ;
LAWSON, HB .
ACTA MATHEMATICA, 1982, 148 :47-157
[8]   Complete biconservative surfaces in the hyperbolic space H 3? [J].
Nistor, Simona ;
Oniciuc, Cezar .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 198
[9]   Lagrangian submanifolds of Cn with conformal Maslov form and the Whitney sphere [J].
Ros, A ;
Urbano, F .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (01) :203-226
[10]   Hamiltonian stationary normal bundles of surfaces in R3 [J].
Sakaki, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (05) :1509-1515