INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL

被引:4
|
作者
Setti, Paulo T., Jr. [1 ]
Tabibi, Sajad [1 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Med, Luxembourg, Luxembourg
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
关键词
Incidence angle; GNSS-R; CYGNSS; surface reflectivity; soil moisture;
D O I
10.1109/IGARSS52108.2023.10282074
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Large-scale near-surface soil moisture can be retrieved from Global Navigation Satellite System Reflectometry (GNSS-R) surface reflectivity observations, which are dependent on the signal incidence angle and therefore need to be normalized. Using 4 years of Cyclone GNSS (CYGNSS) data, in this study we propose a new method for this normalization, accounting for the spatially varying effects of coherent and incoherent scattering. The method is based on a linear regression between the gridded incidence angle and surface reflectivity. We applied the normalized surface reflectivity observations in our soil moisture retrieval algorithm and found a median unbiased root-mean-square error (ubRMSE) of 0.0504 cm(3)cm(-3) using the Soil Moisture Active Passive (SMAP) as the reference, an improved result compared to other incidence angle correction methods described in the literature.
引用
收藏
页码:510 / 513
页数:4
相关论文
共 50 条
  • [31] Sensing soil moisture and vegetation using GNSS-R polarimetric measurement
    Jia, Yan
    Savi, Patrizia
    ADVANCES IN SPACE RESEARCH, 2017, 59 (03) : 858 - 869
  • [32] INVESTIGATING THE EFFECTS OF METEOROLOGICAL DATA RAINFALL AND TEMPERATURE ON GNSS-R SOIL MOISTURE INVERSION
    Shi, Yajie
    Liang, Yueji
    Ren, Chao
    Lai, Jianmin
    Ding, Qin
    Hu, Xinmiao
    2021 IEEE SPECIALIST MEETING ON REFLECTOMETRY USING GNSS AND OTHER SIGNALS OF OPPORTUNITY 2021 (GNSS+R 2021), 2021, : 97 - 100
  • [33] Ground-based GNSS-R soil moisture retrieval based on correlation power correction
    Hong X.
    Zhang B.
    Ruan H.
    Han M.
    Yang D.
    Song S.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (08): : 1558 - 1564
  • [34] Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture: Global and Regional Differences and Impact of Different Spatial Scales
    Camps, Adriano
    Vall Llossera, Mercedes
    Park, Hyuk
    Portal, Gerard
    Rossato, Luciana
    REMOTE SENSING, 2018, 10 (11):
  • [35] A Method of Spaceborne GNSS-R Sea Surface Wind Direction Inversion
    Gao H.
    Bai Z.-G.
    Fan D.-D.
    Bai, Zhao-Guang (13910027870@139.com), 2020, China Spaceflight Society (41): : 1473 - 1480
  • [36] AIRBORNE GNSS-R, THERMAL AND OPTICAL DATA RELATIONSHIPS FOR SOIL MOISTURE RETRIEVALS
    Sanchez, N.
    Alonso-Arroyo, A.
    Gonzalez-Zamora, A.
    Martinez-Fernandez, J.
    Camps, A.
    Vall-llosera, M.
    Pablos, M.
    Herrero-Jimenez, C. M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4785 - 4788
  • [37] SOIL MOISTURE AND VEGETATION IMPACT IN GNSS-R TECHDEMOSAT-1 OBSERVATIONS
    Camps, A.
    Park, H.
    Pablos, M.
    Foti, G.
    Gommenginger, C.
    Liu, Pang-Wei
    Judge, J.
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1982 - 1984
  • [38] GROUND-BASED GNSS-R REMOTE SENSING EXPERIMENT FOR RETRIEVAL OF SOIL MOISTURE CONTENT IN CHINA
    Xiao Han
    Yang Zhenyu
    Hu Caiyi
    Chen Xiuwan
    Zhen Han
    Cao Yanfeng
    Li Wei
    Li Huaiyu
    Huang Dan
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 4070 - 4073
  • [39] The study of soil moisture retrieval from GNSS-R signals based on AIEM model and experiment data
    Mao, Kebiao
    Wang, Jianming
    Zhang, Mengyang
    Tang, Huajun
    Zhou, Qingbo
    Gaojishu Tongxin/Chinese High Technology Letters, 2009, 19 (03): : 295 - 301
  • [40] Desert Roughness Retrieval Using CYGNSS GNSS-R Data
    Stilla, Donato
    Zribi, Mehrez
    Pierdicca, Nazzareno
    Baghdadi, Nicolas
    Huc, Mireille
    REMOTE SENSING, 2020, 12 (04)