MEAN FIELD LIMIT AND QUANTITATIVE ESTIMATES WITH SINGULAR ATTRACTIVE KERNELS

被引:16
作者
Bresch, Didier [1 ]
Jabin, Pierre-Emmanuel [2 ,3 ]
Wang, Zhenfu [4 ]
机构
[1] Univ Savoie Mt Blanc, Lab Math, CNRS UMR 5127, Le Bourget Du Lac, France
[2] Penn State Univ, Dept Math, State Coll, PA USA
[3] Penn State Univ, Huck Inst, State Coll, PA USA
[4] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
STOCHASTIC PARTICLE APPROXIMATION; PATLAK-KELLER-SEGEL; QUASI-NEUTRAL LIMIT; NAVIER-STOKES; PROPAGATION; CHAOS; EQUATIONS; EXISTENCE; SYSTEM; MODEL;
D O I
10.1215/00127094-2022-0088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the mean field limit and quantitative estimates for many-particle systems with singular attractive interactions between particles. As an important example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in optimal subcritical regimes is obtained for the first time. To give an answer to this long-standing problem, we take advantage of a new modulated free energy and prove some precise large deviation estimates encoding the competition between diffusion and attraction. Combined with the range of repulsive kernels, already treated in the proceedings of the Seminaire Laurent Schwartz, we provide the full proof of results announced by the authors in 2019.
引用
收藏
页码:2591 / 2641
页数:51
相关论文
共 44 条
[32]  
Osada H., 1987, Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), P303
[33]   The geometry of dissipative evolution equations: The porous medium equation [J].
Otto, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2001, 26 (1-2) :101-174
[34]  
Puel M, 2004, ASYMPTOTIC ANAL, V40, P303
[35]   GLOBAL-IN-TIME MEAN-FIELD CONVERGENCE FOR SINGULAR RIESZ-TYPE DIFFUSIVE FLOWS [J].
Rosenzweig, Matthew ;
Serfaty, Sylvia .
ANNALS OF APPLIED PROBABILITY, 2023, 33 (02) :754-798
[36]  
SAINT-RAYMOND L., 2019, Asterisque, V414, P289, DOI [10.24033/ast.1087.(2597), DOI 10.24033/AST.1087.(2597)]
[37]  
Serfaty S., 2018, Proceedings International Congress of Math, Rio de Janeiro, P935
[38]   MEAN FIELD LIMIT FOR COULOMB-TYPE FLOWS [J].
Serfaty, Sylvia ;
Duerinckx, Mitia .
DUKE MATHEMATICAL JOURNAL, 2020, 169 (15) :2887-2935
[39]  
Lim TS, 2020, Arxiv, DOI arXiv:1906.01051
[40]   A new McKean-Vlasov stochastic interpretation of the parabolic-parabolic Keller-Segel model: The one-dimensional case [J].
Talay, Denis ;
Tomasevic, Milica .
BERNOULLI, 2020, 26 (02) :1323-1353