MEAN FIELD LIMIT AND QUANTITATIVE ESTIMATES WITH SINGULAR ATTRACTIVE KERNELS

被引:7
作者
Bresch, Didier [1 ]
Jabin, Pierre-Emmanuel [2 ,3 ]
Wang, Zhenfu [4 ]
机构
[1] Univ Savoie Mt Blanc, Lab Math, CNRS UMR 5127, Le Bourget Du Lac, France
[2] Penn State Univ, Dept Math, State Coll, PA USA
[3] Penn State Univ, Huck Inst, State Coll, PA USA
[4] Peking Univ, Beijing Int Ctr Math Res, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
STOCHASTIC PARTICLE APPROXIMATION; PATLAK-KELLER-SEGEL; QUASI-NEUTRAL LIMIT; NAVIER-STOKES; PROPAGATION; CHAOS; EQUATIONS; EXISTENCE; SYSTEM; MODEL;
D O I
10.1215/00127094-2022-0088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the mean field limit and quantitative estimates for many-particle systems with singular attractive interactions between particles. As an important example, a full rigorous derivation (with quantitative estimates) of the Patlak-Keller-Segel model in optimal subcritical regimes is obtained for the first time. To give an answer to this long-standing problem, we take advantage of a new modulated free energy and prove some precise large deviation estimates encoding the competition between diffusion and attraction. Combined with the range of repulsive kernels, already treated in the proceedings of the Seminaire Laurent Schwartz, we provide the full proof of results announced by the authors in 2019.
引用
收藏
页码:2591 / 2641
页数:51
相关论文
共 44 条
  • [1] [Anonymous], 1992, Geom. and Funct. Anal., DOI DOI 10.1007/BF01895706
  • [2] [Anonymous], 1990, Stochastics Stochastics Rep.
  • [3] Arsenio D, 2019, EMS MONOGR MATH, P1, DOI 10.4171/193
  • [4] Bedrossian J, 2014, ARCH RATION MECH AN, V214, P717, DOI 10.1007/s00205-014-0796-z
  • [5] Increasing propagation of chaos for mean field models
    Ben Arous, G
    Zeitouni, O
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1999, 35 (01): : 85 - 102
  • [6] Blanchet A, 2006, ELECTRON J DIFFER EQ
  • [7] DYNAMICS OF A PLANAR COULOMB GAS
    Bolley, Francois
    Chafai, Djalil
    Fontbona, Joaquin
    [J]. ANNALS OF APPLIED PROBABILITY, 2018, 28 (05) : 3152 - 3183
  • [8] BRESCH D., SEM L SCHWARTZ EDP A, DOI [10.5802/slsedp.135, DOI 10.5802/SLSEDP.135]
  • [9] On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model
    Bresch, Didier
    Jabin, Pierre-Emmanuel
    Wang, Zhenfu
    [J]. COMPTES RENDUS MATHEMATIQUE, 2019, 357 (09) : 708 - 720
  • [10] Global existence of weak solutions for compressible Navier-Stokes equations: Thermodynamically unstable pressure and anisotropic viscous stress tensor
    Bresch, Didier
    Jabin, Pierre-emmanuel
    [J]. ANNALS OF MATHEMATICS, 2018, 188 (02) : 577 - 684