Deconvolution of the electrochemical impedance of Na/NaCrO2 cells with ester- and ether-based electrolytes

被引:2
作者
Chen, Changlong [1 ]
Lin, Hao [2 ]
Liu, Bingyu [1 ]
Shaw, Leon [1 ]
机构
[1] Dept Mech Mat & Aerosp Engn, Chicago, IL 60616 USA
[2] IIT, Dept Chem, Chicago, IL USA
关键词
Na-ion batteries; Electrochemical impedance spectroscopy; Ester-based electrolyte; Ether-based electrolyte; NaCrO2; cathode; LITHIUM-ION BATTERIES; CHARGE-TRANSFER; INTERPHASE; PERFORMANCE; ELECTRODES; RESISTANCE; ANODE;
D O I
10.1016/j.jpowsour.2023.233465
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Na-ion battery is regarded as the most promising battery chemistry for the post Li-ion battery generation. Unlike Li-ion batteries, Na-ion batteries, due to the intrinsic instabilities, are rarely studied using electrochemical impedance spectroscopy to inspect the electrode kinetics within. Here, we combine the electrolyte-dependent Na metal labeling and distribution function of relaxation time analysis to readily deconvolute the conventional Nyquist spectrum of Na/NaCrO2 cells into individual electrode processes. Utilizing the corresponding equivalent circuit model with physical implications, the performance-limiting kinetics of Na/NaCrO2 cells with the typical ester-based electrolyte, PC/FEC, and ether-based one, diglyme, are precisely identified. Given the sluggish interference generated at the Na metal counter electrode with PC/FEC electrolyte, proper ether-based electro-lytes are recommended to be adopted in the future validation of potential materials for Na-ion battery studies.
引用
收藏
页数:7
相关论文
共 50 条
[1]  
[Anonymous], 2022, NAT ENERGY, V7, P461
[2]   Electrochemical Impedance Spectroscopy of Metal Oxide Electrodes for Energy Applications [J].
Bredar, Alexandria R. C. ;
Chown, Amanda L. ;
Burton, Andricus R. ;
Farnum, Byron H. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (01) :66-98
[3]   Detecting onset of lithium plating during fast charging of Li-ion batteries using operando electrochemical impedance spectroscopy [J].
Brown, David E. ;
McShane, Eric J. ;
Konz, Zachary M. ;
Knudsen, Kristian B. ;
McCloskey, Bryan D. .
CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (10)
[4]   Explicit Conversion between Different Equivalent Circuit Models for Electrochemical Impedance Analysis of Lithium-Ion Cells [J].
Buteau, Sam ;
Dahn, D. C. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (02) :A228-A234
[5]   A Desolvation-Free Sodium Dual-Ion Chemistry for High Power Density and Extremely Low Temperature [J].
Chen, Jiawei ;
Peng, Yu ;
Yin, Yue ;
Fang, Zhong ;
Cao, Yongjie ;
Wang, Yonggang ;
Dong, Xiaoli ;
Xia, Yongyao .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (44) :23858-23862
[6]   Detection of lithium plating in lithium-ion batteries by distribution of relaxation times [J].
Chen, Xiang ;
Li, Liangyu ;
Liu, Mengmeng ;
Huang, Tao ;
Yu, Aishui .
JOURNAL OF POWER SOURCES, 2021, 496
[7]   The importance of interphase contacts in Li ion electrodes: The meaning of the high-frequency impedance arc [J].
Gaberscek, Miran ;
Moskon, Joze ;
Erjavec, Bostjan ;
Dominko, Robert ;
Jamnik, Janez .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (10) :A170-A174
[9]   Correlating capacity fade with film resistance loss in fast charging of lithium-ion battery [J].
Gargh, Prashant ;
Sarkar, Abhishek ;
Lui, Yu Hui ;
Shen, Sheng ;
Hu, Chao ;
Hu, Shan ;
Nlebedim, Ikenna C. ;
Shrotriya, Pranav .
JOURNAL OF POWER SOURCES, 2021, 485
[10]   Electroactive-conducting polymers for corrosion control - 4. Studies of poly(3-octyl pyrrole) and poly(3-octadecyl pyrrole) on aluminum 2024-T3 alloy [J].
Gelling, VJ ;
Wiest, MM ;
Tallman, DE ;
Bierwagen, GP ;
Wallace, GG .
PROGRESS IN ORGANIC COATINGS, 2001, 43 (1-3) :149-157