Censoring heavy-tail count distributions for parameter estimation with an application to stable distributions

被引:0
|
作者
Di Noia, Antonio [1 ,2 ]
Marcheselli, Marzia [3 ]
Pisani, Caterina [3 ,5 ]
Pratelli, Luca [4 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Univ Svizzera italiana, Lugano, Switzerland
[3] Univ Siena, Dept Econ & Stat, Siena, Italy
[4] Naval Acad, Livorno, Italy
[5] Univ Siena, Dept Econ & Stat, Pzza S Francesco 8, I-53100 Siena, Italy
关键词
Asymptotic normality; Consistency; Data-driven; Probability generating function;
D O I
10.1016/j.spl.2023.109903
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new approach based on censoring and moment criterion is introduced for parameter estimation of count distributions when the probability generating function is available even though a closed form of the probability mass function and/or finite moments do not exist.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 11 条