Artificial intelligence-aided optical imaging for cancer theranostics

被引:13
作者
Xu, Mengze [1 ,2 ,3 ]
Chen, Zhiyi [4 ]
Zheng, Junxiao [2 ,3 ]
Zhao, Qi [2 ]
Yuan, Zhen [2 ,3 ]
机构
[1] Beijing Normal Univ, Ctr Cognit & Neuroergon, State Key Lab Cognit Neurosci & Learning, Zhuhai, Peoples R China
[2] Univ Macau, Fac Hlth Sci, Canc Ctr, Macau, Macao, Peoples R China
[3] Univ Macau, Ctr Cognit & Brain Sci, Macau, Macao, Peoples R China
[4] Univ South China, Inst Med Imaging, Hengyang Med Sch, Hengyang, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical imaging; Artificial intelligence; Cancer theranostics; Precision oncology; IN-VIVO; CLINICAL-APPLICATION; COMPUTER-ANALYSIS; NEURAL-NETWORKS; SKIN-CANCER; DIAGNOSIS; TOMOGRAPHY; CLASSIFICATION; IMAGES; OCT;
D O I
10.1016/j.semcancer.2023.06.003
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
The use of artificial intelligence (AI) to assist biomedical imaging have demonstrated its high accuracy and high efficiency in medical decision-making for individualized cancer medicine. In particular, optical imaging methods are able to visualize both the structural and functional information of tumors tissues with high contrast, low cost, and noninvasive property. However, no systematic work has been performed to inspect the recent advances on AI-aided optical imaging for cancer theranostics. In this review, we demonstrated how AI can guide optical imaging methods to improve the accuracy on tumor detection, automated analysis and prediction of its histopathological section, its monitoring during treatment, and its prognosis by using computer vision, deep learning and natural language processing. By contrast, the optical imaging techniques involved mainly consisted of various tomography and microscopy imaging methods such as optical endoscopy imaging, optical coherence tomography, photoacoustic imaging, diffuse optical tomography, optical microscopy imaging, Raman imaging, and fluorescent imaging. Meanwhile, existing problems, possible challenges and future prospects for AI-aided optical imaging protocol for cancer theranostics were also discussed. It is expected that the present work can open a new avenue for precision oncology by using AI and optical imaging tools.
引用
收藏
页码:62 / 80
页数:19
相关论文
共 209 条
  • [1] Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices
    Abramoff, Michael D.
    Lavin, Philip T.
    Birch, Michele
    Shah, Nilay
    Folk, James C.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [2] Artificial intelligence as the next step towards precision pathology
    Acs, B.
    Rantalainen, M.
    Hartman, J.
    [J]. JOURNAL OF INTERNAL MEDICINE, 2020, 288 (01) : 62 - 81
  • [3] Machine Learning and the Cancer-Diagnosis Problem - No Gold Standard
    Adamson, Adewole S.
    Welch, H. Gilbert
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (24) : 2285 - 2287
  • [4] Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine
    Adir, Omer
    Poley, Maria
    Chen, Gal
    Froim, Sahar
    Krinsky, Nitzan
    Shklover, Jeny
    Shainsky-Roitman, Janna
    Lammers, Twan
    Schroeder, Avi
    [J]. ADVANCED MATERIALS, 2020, 32 (13)
  • [5] Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis
    Aggarwal, Ravi
    Sounderajah, Viknesh
    Martin, Guy
    Ting, Daniel S. W.
    Karthikesalingam, Alan
    King, Dominic
    Ashrafian, Hutan
    Darzi, Ara
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [6] Modeling combined ultrasound and photoacoustic imaging: Simulations aiding device development and artificial intelligence
    Agrawal, Sumit
    Suresh, Thaarakh
    Garikipati, Ankit
    Dangi, Ajay
    Kothapalli, Sri-Rajasekhar
    [J]. PHOTOACOUSTICS, 2021, 24
  • [7] Genetic effects on gene expression across human tissues
    Aguet, Francois
    Brown, Andrew A.
    Castel, Stephane E.
    Davis, Joe R.
    He, Yuan
    Jo, Brian
    Mohammadi, Pejman
    Park, Yoson
    Parsana, Princy
    Segre, Ayellet V.
    Strober, Benjamin J.
    Zappala, Zachary
    Cummings, Beryl B.
    Gelfand, Ellen T.
    Hadley, Kane
    Huang, Katherine H.
    Lek, Monkol
    Li, Xiao
    Nedzel, Jared L.
    Nguyen, Duyen Y.
    Noble, Michael S.
    Sullivan, Timothy J.
    Tukiainen, Taru
    MacArthur, Daniel G.
    Getz, Gad
    Management, Nih Program
    Addington, Anjene
    Guan, Ping
    Koester, Susan
    Little, A. Roger
    Lockhart, Nicole C.
    Moore, Helen M.
    Rao, Abhi
    Struewing, Jeffery P.
    Volpi, Simona
    Collection, Biospecimen
    Brigham, Lori E.
    Hasz, Richard
    Hunter, Marcus
    Johns, Christopher
    Johnson, Mark
    Kopen, Gene
    Leinweber, William F.
    Lonsdale, John T.
    McDonald, Alisa
    Mestichelli, Bernadette
    Myer, Kevin
    Roe, Bryan
    Salvatore, Michael
    Shad, Saboor
    [J]. NATURE, 2017, 550 (7675) : 204 - +
  • [8] Artificial intelligence (AI) in medicine, current applications and future role with special emphasis on its potential and promise in pathology: present and future impact, obstacles including costs and acceptance among pathologists, practical and philosophical considerations. A comprehensive review
    Ahmad, Zubair
    Rahim, Shabina
    Zubair, Maha
    Abdul-Ghafar, Jamshid
    [J]. DIAGNOSTIC PATHOLOGY, 2021, 16 (01)
  • [9] The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans
    Ardlie, Kristin G.
    DeLuca, David S.
    Segre, Ayellet V.
    Sullivan, Timothy J.
    Young, Taylor R.
    Gelfand, Ellen T.
    Trowbridge, Casandra A.
    Maller, Julian B.
    Tukiainen, Taru
    Lek, Monkol
    Ward, Lucas D.
    Kheradpour, Pouya
    Iriarte, Benjamin
    Meng, Yan
    Palmer, Cameron D.
    Esko, Tonu
    Winckler, Wendy
    Hirschhorn, Joel N.
    Kellis, Manolis
    MacArthur, Daniel G.
    Getz, Gad
    Shabalin, Andrey A.
    Li, Gen
    Zhou, Yi-Hui
    Nobel, Andrew B.
    Rusyn, Ivan
    Wright, Fred A.
    Lappalainen, Tuuli
    Ferreira, Pedro G.
    Ongen, Halit
    Rivas, Manuel A.
    Battle, Alexis
    Mostafavi, Sara
    Monlong, Jean
    Sammeth, Michael
    Mele, Marta
    Reverter, Ferran
    Goldmann, Jakob M.
    Koller, Daphne
    Guigo, Roderic
    McCarthy, Mark I.
    Dermitzakis, Emmanouil T.
    Gamazon, Eric R.
    Im, Hae Kyung
    Konkashbaev, Anuar
    Nicolae, Dan L.
    Cox, Nancy J.
    Flutre, Timothee
    Wen, Xiaoquan
    Stephens, Matthew
    [J]. SCIENCE, 2015, 348 (6235) : 648 - 660
  • [10] Mesoscopic characterization of prostate cancer using Raman spectroscopy: potential for diagnostics and therapeutics
    Aubertin, Kelly
    Vincent Quoc Trinh
    Jermyn, Michael
    Baksic, Paul
    Grosset, Andree-Anne
    Desroches, Joannie
    St-Arnaud, Karl
    Birlea, Mirela
    Vladoiu, Maria Claudia
    Latour, Mathieu
    Albadine, Roula
    Saad, Fred
    Leblond, Frederic
    Trudel, Dominique
    [J]. BJU INTERNATIONAL, 2018, 122 (02) : 326 - 336