Seismic fragility analysis of containment structure subjected to near fault ground motions

被引:5
|
作者
Jin, Song [1 ]
Wang, Dongmei [2 ]
Jiang, Di [2 ]
机构
[1] Anhui Univ Technol, Sch Civil Engn & Architecture, Maanshan 243002, Anhui, Peoples R China
[2] China Nucl Power Engn Co Ltd, Beijing 100840, Peoples R China
关键词
Containment structure; Fragility analysis; Energy-based global damage index; Bootstrap resampling procedure; FLING-STEP; MODEL; UNCERTAINTY; VARIABILITY; SYSTEM;
D O I
10.1016/j.pnucene.2023.104734
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This study presents seismic fragility analysis of the containment structure subjected to near fault ground motion. Prior to perform seismic fragility analysis, 20 near fault ground motion records with pulse characteristics are selected PEER database. Nonlinear dynamic analysis of the containment structure is performed automatically using Matlab scripts and Batch files. To quantify the global damage behavior of the containment structure subjected to near fault ground motion, energy-based global damage index is proposed. The evolution of global damage behavior and tensile damage of the containment structure are analyzed in depth. Goodness of fit for two widely used fragility fitting methods is compared. To quantify the uncertainty in fragility function parameters, Bootstrap resampling procedure and analytical statistical inference method are adopted to estimate the confidence interval of the fragility function parameters. Results indicated that the bottom of containment structure suffered from severe tensile damage and it is most vulnerable location of the containment structure. With the increase of peak ground motion intensity level, tensile damage increases rapidly and extends to higher elevations of the containment structure. The relative error for fragility function parameter (x) over tilde (m) is not more than 4%, and the error of fragility function parameter (beta) over tilde (R) is more than 12%. In general, analytical statistical method provides good estimation for the confidence interval of fragility function parameter (x) over tilde (m), while overestimate the confidence interval of fragility function parameter (beta) over tilde (R).
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Seismic response of RC bridges under near-fault ground motions: A parametric investigation
    Srivastava, Charu
    Pandikkadavath, Muhamed Safeer
    Mangalathu, Sujith
    AlHamaydeh, Mohammad
    STRUCTURES, 2024, 61
  • [22] Seismic fragility analysis of nuclear power plant structure under far-field ground motions
    Zhao, Chunfeng
    Yu, Na
    Oz, Yagiz
    Wang, Jingfeng
    Mo, Y. L.
    ENGINEERING STRUCTURES, 2020, 219 (219)
  • [23] Seismic behaviour of dams to near fault and far fault ground motions: A state of the art review
    Gorai, Soumya
    Maity, Damodar
    EARTHQUAKES AND STRUCTURES, 2021, 21 (03) : 251 - 263
  • [24] Seismic fragility assessment of concrete gravity dams under near source synthetic ground motions
    Gorai, Soumya
    Maity, Damodar
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2025, 21 (02) : 281 - 301
  • [25] Seismic Evaluation of Horizontally Curved Bridges Subjected to Near-Field Ground Motions
    Minavand, Mahmood
    Ghafory-Ashtiany, Mohsen
    LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2019, 16 (02)
  • [26] Seismic optimum design of triple friction pendulum bearing subjected to near-fault pulse-like ground motions
    Moeindarbari, Hesamaldin
    Taghikhany, Touraj
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (04) : 701 - 716
  • [27] Probabilistic seismic response and uncertainty analysis of continuous bridges under near-fault ground motions
    Hai-Bin Ma
    Wei-Dong Zhuo
    Davide Lavorato
    Camillo Nuti
    Gabriele Fiorentino
    Giuseppe Carlo Marano
    Rita Greco
    Bruno Briseghella
    Frontiers of Structural and Civil Engineering, 2019, 13 : 1510 - 1519
  • [28] Displacement-based seismic design of bridge bents retrofitted with various bracing devices and their seismic fragility assessment under near-fault and far-field ground motions
    Xiang, Nailiang
    Alam, M. Shahria
    SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2019, 119 (75-90) : 75 - 90
  • [29] Seismic fragility assessment of a multi-span RC bridge in Bangladesh considering near-fault, far-field and long duration ground motions
    Kabir, Md Rashedul
    Billah, A. H. M. Muntasir
    Alam, M. Shahria
    STRUCTURES, 2019, 19 : 333 - 348
  • [30] Probabilistic seismic response and uncertainty analysis of continuous bridges under near-fault ground motions
    Ma, Hai-Bin
    Zhuo, Wei-Dong
    Lavorato, Davide
    Nuti, Camillo
    Fiorentino, Gabriele
    Marano, Giuseppe Carlo
    Greco, Rita
    Briseghella, Bruno
    FRONTIERS OF STRUCTURAL AND CIVIL ENGINEERING, 2019, 13 (06) : 1510 - 1519