Identifying Predictors Associated with Risk of Death or Admission to Intensive Care Unit in Internal Medicine Patients with Sepsis: A Comparison of Statistical Models and Machine Learning Algorithms

被引:5
作者
Mirijello, Antonio [1 ]
Fontana, Andrea [2 ]
Greco, Antonio Pio [1 ]
Tosoni, Alberto [3 ]
D'Agruma, Angelo [1 ]
Labonia, Maria [4 ]
Copetti, Massimiliano [2 ]
Piscitelli, Pamela [1 ]
De Cosmo, Salvatore [1 ]
机构
[1] Fdn IRCCS Casa Sollievo Sofferenza, Dept Med Sci, I-71013 San Giovanni Rotondo, Italy
[2] Fdn IRCCS Casa Sollievo Sofferenza, Unit Biostat, I-71013 San Giovanni Rotondo, Italy
[3] Fdn Policlin Univ A Gemelli IRCCS, Dept Internal Med & Gastroenterol, I-00168 Rome, Italy
[4] Fdn IRCCS Casa Sollievo Sofferenza, Unit Microbiol, I-71013 San Giovanni Rotondo, Italy
来源
ANTIBIOTICS-BASEL | 2023年 / 12卷 / 05期
关键词
sepsis; machine learning; prognostication; internal medicine; SOFA; IN-HOSPITAL MORTALITY; CONSENSUS DEFINITIONS; MEDS SCORE; MANAGEMENT;
D O I
10.3390/antibiotics12050925
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: Sepsis is a time-dependent disease: the early recognition of patients at risk for poor outcome is mandatory. Aim: To identify prognostic predictors of the risk of death or admission to intensive care units in a consecutive sample of septic patients, comparing different statistical models and machine learning algorithms. Methods: Retrospective study including 148 patients discharged from an Italian internal medicine unit with a diagnosis of sepsis/septic shock and microbiological identification. Results: Of the total, 37 (25.0%) patients reached the composite outcome. The sequential organ failure assessment (SOFA) score at admission (odds ratio (OR): 1.83; 95% confidence interval (CI): 1.41-2.39; p < 0.001), delta SOFA (OR: 1.64; 95% CI: 1.28-2.10; p < 0.001), and the alert, verbal, pain, unresponsive (AVPU) status (OR: 5.96; 95% CI: 2.13-16.67; p < 0.001) were identified through the multivariable logistic model as independent predictors of the composite outcome. The area under the receiver operating characteristic curve (AUC) was 0.894; 95% CI: 0.840-0.948. In addition, different statistical models and machine learning algorithms identified further predictive variables: delta quick-SOFA, delta-procalcitonin, mortality in emergency department sepsis, mean arterial pressure, and the Glasgow Coma Scale. The cross-validated multivariable logistic model with the least absolute shrinkage and selection operator (LASSO) penalty identified 5 predictors; and recursive partitioning and regression tree (RPART) identified 4 predictors with higher AUC (0.915 and 0.917, respectively); the random forest (RF) approach, including all evaluated variables, obtained the highest AUC (0.978). All models' results were well calibrated. Conclusions: Although structurally different, each model identified similar predictive covariates. The classical multivariable logistic regression model was the most parsimonious and calibrated one, while RPART was the easiest to interpret clinically. Finally, LASSO and RF were the costliest in terms of number of variables identified.
引用
收藏
页数:15
相关论文
共 40 条
  • [1] Epidemiology of severe sepsis in the United States: Analysis of incidence, outcome, and associated costs of care
    Angus, DC
    Linde-Zwirble, WT
    Lidicker, J
    Clermont, G
    Carcillo, J
    Pinsky, MR
    [J]. CRITICAL CARE MEDICINE, 2001, 29 (07) : 1303 - 1310
  • [2] Impact of the implementation of a Sepsis Code Program in medical patient management: a cohort study in an Internal Medicine ward
    Bautista Hernandez, Azucena
    de Vega-Rios, Enrique
    Serrano Ballesteros, Jorge
    Useros Brana, Daniel
    Cardenoso Domingo, Laura
    Figuerola Tejerina, Angels
    Von Wernitz Teleki, Andres
    Jimenez Jimenez, David
    de los Santos Gil, Ignacio
    Saez Bejar, Carmen
    [J]. REVISTA ESPANOLA DE QUIMIOTERAPIA, 2022, 35 (02) : 178 - 191
  • [3] Epidemiology of sepsis in Internal Medicine Units of Apulia: results of SEMINA (SEpsis Management in INternal medicine Apulia) study
    Belfiore, A.
    Mastroianni, F.
    Ventrella, F.
    Errico, M.
    Suppressa, P.
    Tomai, M.
    Sabatino, S.
    De Palma, G.
    Pappagallo, F.
    Erbi, A.
    Simone, O.
    Longo, S.
    Vendemiale, G.
    Balsamo, M.
    Tartaglia, I.
    Guida, P.
    [J]. ANNALI DI IGIENE MEDICINA PREVENTIVA E DI COMUNITA, 2023, 35 (03): : 282 - 296
  • [4] SmcHD1, containing a structural-maintenance-of-chromosomes hinge domain, has a critical role in X inactivation
    Blewitt, Marnie E.
    Gendrel, Anne-Valerie
    Pang, Zhenyi
    Sparrow, Duncan B.
    Whitelaw, Nadia
    Craig, Jeffrey M.
    Apedaile, Anwyn
    Hilton, Douglas J.
    Dunwoodie, Sally L.
    Brockdorff, Neil
    Kay, Graham F.
    Whitelaw, Emma
    [J]. NATURE GENETICS, 2008, 40 (05) : 663 - 669
  • [5] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [6] Machine learning models for predicting in-hospital mortality in patient with sepsis: Analysis of vital sign dynamics
    Cheng, Chi-Yung
    Kung, Chia-Te
    Chen, Fu-Cheng
    Chiu, I-Min
    Lin, Chun-Hung Richard
    Chu, Chun-Chieh
    Kung, Chien Feng
    Su, Chih-Min
    [J]. FRONTIERS IN MEDICINE, 2022, 9
  • [7] Quick Sepsis-related Organ Failure Assessment; Systemic Inflammatory Response Syndrome, and Early Warning Scores for Detecting Clinical Deterioration in Infected Patients outside the Intensive Care Unit
    Churpek, Matthew M.
    Snyder, Ashley
    Han, Xuan
    Sokol, Sarah
    Pettit, Natasha
    Howell, Michael D.
    Edelson, Dana P.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2017, 195 (07) : 906 - 911
  • [8] Sepsis incidence and outcome:: Contrasting the intensive care unit with the hospital ward
    Esteban, Andres
    Frutos-Vivar, Fernando
    Ferguson, Niall D.
    Penuelas, Oscar
    Lorente, Jose Angel
    Gordo, Federico
    Honrubia, Teresa
    Algora, Alejandro
    Bustos, Alejandra
    Garcia, Gema
    Rodriguez Diaz-Reganon, Inmaculada
    Ruiz de Luna, Rafael
    [J]. CRITICAL CARE MEDICINE, 2007, 35 (05) : 1284 - 1289
  • [9] Regularization Paths for Generalized Linear Models via Coordinate Descent
    Friedman, Jerome
    Hastie, Trevor
    Tibshirani, Rob
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2010, 33 (01): : 1 - 22
  • [10] Prognostic tools for elderly patients with sepsis: in search of new predictive models
    Gamboa-Antinolo, Fernando-Miguel
    [J]. INTERNAL AND EMERGENCY MEDICINE, 2021, 16 (04) : 1027 - 1030