Electronic effects promoted the catalytic activities of binuclear Co(ii) complexes for visible-light-driven CO2 reduction in a water-containing system

被引:9
作者
Su, Chao [1 ]
Chen, Zilu [1 ]
Feng, Qin [1 ]
Wei, Fangsha [1 ]
Mo, Anna [1 ]
Huang, Hai-Hua [1 ]
Hu, Huancheng [1 ]
Zou, Huahong [1 ]
Liang, Fupei [1 ]
Liu, Dongcheng [1 ]
机构
[1] Guangxi Normal Univ, Collaborat Innovat Ctr Guangxi Ethn Med, Sch Chem & Pharmaceut Sci, State Key Lab Chem & Mol Engn Med Resources, Yucai Rd 15, Guilin 541004, Peoples R China
基金
中国国家自然科学基金;
关键词
PHOTOCATALYTIC CONVERSION; CARBON-DIOXIDE; COBALT; EFFICIENT; PROTON; ROBUST; OXYGEN;
D O I
10.1039/d3dt00054k
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Under the action of a catalyst, the photoinduced reduction of CO2 to chemicals and fuels is one of the greenest and environment-friendly approaches for decreasing atmospheric CO2 emissions. Since the environment was affected by the greenhouse effect, scientists have never stopped exploring efficient photoinduced CO2 reduction systems, particularly the highly desired non-noble metal complexes. Most of the currently reported complexes based on non-noble metals exhibit low catalytic activity, selectivity, and stability in aqueous systems under the irradiation of visible light. Herein, we report a new binuclear cobalt complex [Co-2(L-1)(OAc)(2)](OAc) (Co2L1, HL1 = 2,6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-methoxyphenol), which accelerates the visible-light-driven conversion of CO2 to CO in acetonitrile/water (4/1, v/v) nearly 40% more than that for the previously reported [Co-2(L-2)(OAc)(2)](OAc) (Co2L2, HL2 = 2, 6-bis((bis(pyridin-2-ylmethyl)amino)methyl)-4-(tert-butyl)phenol) by our research group. It has an excellent CO selectivity of 98%, and the TONCO is as high as 5920. Experimental results and DFT calculations showed that the enhanced catalytic performance of Co2L1 is due to the electron-donating effect of a methoxy group (-OCH3) in Co2L1 compared to a tertiary butyl group (-C(CH3)(3)) in Co2L2, which reduces the energy barrier of the rate-limiting CO2 coordination step in the visible-light-driven CO2 reduction process.
引用
收藏
页码:4548 / 4553
页数:6
相关论文
共 52 条
  • [1] Photocatalytic CO2 Reduction to C2+Products
    Albero, Josep
    Peng, Yong
    Garcia, Hermenegildo
    [J]. ACS CATALYSIS, 2020, 10 (10) : 5734 - 5749
  • [2] Photocatalytic CO2 Reduction under Visible-Light Irradiation by Ruthenium CNC Pincer Complexes
    Arikawa, Yasuhiro
    Tabata, Itoe
    Miura, Yukari
    Tajiri, Hiroki
    Seto, Yudai
    Horiuchi, Shinnosuke
    Sakuda, Eri
    Umakoshi, Keisuke
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2020, 26 (25) : 5603 - 5606
  • [3] Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment
    Artz, Jens
    Mueller, Thomas E.
    Thenert, Katharina
    Kleinekorte, Johanna
    Meys, Raoul
    Sternberg, Andre
    Bardow, Andre
    Leitner, Walter
    [J]. CHEMICAL REVIEWS, 2018, 118 (02) : 434 - 504
  • [4] Electrocatalytic and homogeneous approaches to conversion of CO2 to liquid fuels
    Benson, Eric E.
    Kubiak, Clifford P.
    Sathrum, Aaron J.
    Smieja, Jonathan M.
    [J]. CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) : 89 - 99
  • [5] Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances
    Bonin, Julien
    Maurin, Antoine
    Robert, Marc
    [J]. COORDINATION CHEMISTRY REVIEWS, 2017, 334 : 184 - 198
  • [6] Selective and Efficient Photocatalytic CO2 Reduction to CO Using Visible Light and an Iron-Based Homogeneous Catalyst
    Bonin, Julien
    Robert, Marc
    Routier, Mathilde
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (48) : 16768 - 16771
  • [7] Highly Efficient and Selective Photocatalytic CO2 Reduction to CO in Water by a Cobalt Porphyrin Molecular Catalyst
    Call, Arnau
    Cibian, Mihaela
    Yamamoto, Keiya
    Nakazono, Takashi
    Yamauchi, Kosei
    Sakai, Ken
    [J]. ACS CATALYSIS, 2019, 9 (06): : 4867 - 4874
  • [8] Efficient trinuclear Ru(ii)-Re(i) supramolecular photocatalysts for CO2 reduction based on a new tris-chelating bridging ligand built around a central aromatic ring
    Cancelliere, Ambra M. M.
    Puntoriero, Fausto
    Serroni, Scolastica
    Campagna, Sebastiano
    Tamaki, Yusuke
    Saito, Daiki
    Ishitani, Osamu
    [J]. CHEMICAL SCIENCE, 2020, 11 (06) : 1556 - 1563
  • [9] Prussian blue analogues and their derived nanomaterials for electrocatalytic water splitting
    Cao, Li-Ming
    Lu, David
    Zhong, Di-Chang
    Lu, Tong-Bu
    [J]. COORDINATION CHEMISTRY REVIEWS, 2020, 407
  • [10] A robust and efficient cobalt molecular catalyst for CO2 reduction
    Chan, Sharon Lai-Fung
    Lam, Tsz Lung
    Yang, Chen
    Yan, Siu-Cheong
    Cheng, Nga Man
    [J]. CHEMICAL COMMUNICATIONS, 2015, 51 (37) : 7799 - 7801