Dual-Awareness Attention for Few-Shot Object Detection

被引:61
|
作者
Chen, Tung-, I [1 ]
Liu, Yueh-Cheng [1 ]
Su, Hung-Ting [1 ]
Chang, Yu-Cheng [1 ]
Lin, Yu-Hsiang [1 ]
Yeh, Jia-Fong [1 ]
Chen, Wen-Chin [1 ]
Hsu, Winston H. [1 ,2 ]
机构
[1] Natl Taiwan Univ, Taipei 106, Taiwan
[2] Mobile Drive Technol, Taipei 236, Taiwan
关键词
Feature extraction; Object detection; Detectors; Correlation; Task analysis; Power capacitors; Adaptation models; Deep learning; object detection; visual attention; few-shot object detection; NETWORKS;
D O I
10.1109/TMM.2021.3125195
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While recent progress has significantly boosted few-shot classification (FSC) performance, few-shot object detection (FSOD) remains challenging for modern learning systems. Existing FSOD systems follow FSC approaches, ignoring critical issues such as spatial variability and uncertain representations, and consequently result in low performance. Observing this, we propose a novel Dual-Awareness Attention (DAnA) mechanism that enables networks to adaptively interpret the given support images. DAnA transforms support images into query-position-aware (QPA) features, guiding detection networks precisely by assigning customized support information to each local region of the query. In addition, the proposed DAnA component is flexible and adaptable to multiple existing object detection frameworks. By adopting DAnA, conventional object detection networks, Faster R-CNN and RetinaNet, which are not designed explicitly for few-shot learning, reach state-of-the-art performance in FSOD tasks. In comparison with previous methods, our model significantly increases the performance by 47% (+6.9 AP), showing remarkable ability under various evaluation settings.
引用
收藏
页码:291 / 301
页数:11
相关论文
共 50 条
  • [1] ECEA: Extensible Co-Existing Attention for Few-Shot Object Detection
    Xin, Zhimeng
    Wu, Tianxu
    Chen, Shiming
    Zou, Yixiong
    Shao, Ling
    You, Xinge
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5564 - 5576
  • [2] Temporal Speciation Network for Few-Shot Object Detection
    Zhao, Xiaowei
    Liu, Xianglong
    Ma, Yuqing
    Bai, Shihao
    Shen, Yifan
    Hao, Zeyu
    Liu, Aishan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8267 - 8278
  • [3] Few-Shot Object Detection: A Comprehensive Survey
    Koehler, Mona
    Eisenbach, Markus
    Gross, Horst-Michael
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 11958 - 11978
  • [4] Few-Shot Object Detection via Dual-Domain Feature Fusion and Patch-Level Attention
    Ren, Guangli
    Liu, Jierui
    Wang, Mengyao
    Guan, Peiyu
    Cao, Zhiqiang
    Yu, Junzhi
    TSINGHUA SCIENCE AND TECHNOLOGY, 2025, 30 (03): : 1237 - 1250
  • [5] Few-Shot Object Detection via Sample Processing
    Xu, Honghui
    Wang, Xinqing
    Shao, Faming
    Duan, Baoguo
    Zhang, Peng
    IEEE ACCESS, 2021, 9 (09): : 29207 - 29221
  • [6] Meta-Learning-Based Incremental Few-Shot Object Detection
    Cheng, Meng
    Wang, Hanli
    Long, Yu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (04) : 2158 - 2169
  • [7] Few-Shot Object Detection With Self-Adaptive Attention Network for Remote Sensing Images
    Xiao, Zixuan
    Qi, Jiahao
    Xue, Wei
    Zhong, Ping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4854 - 4865
  • [8] TIDE: Test-Time Few-Shot Object Detection
    Li, Weikai
    Wei, Hongfeng
    Wu, Yanlai
    Yang, Jie
    Ruan, Yudi
    Li, Yuan
    Tang, Ying
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, 54 (11): : 6500 - 6509
  • [9] A Survey of Self-Supervised and Few-Shot Object Detection
    Huang, Gabriel
    Laradji, Issam
    Vazquez, David
    Lacoste-Julien, Simon
    Rodriguez, Pau
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4071 - 4089
  • [10] Few-Shot Object Detection using Global Attention and Support Attention
    Yang, Chongzhi
    Yu, Linfang
    Xiao, Peng
    Wang, Bintao
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 1446 - 1450