Applications of Elzaki decomposition method to fractional relaxation-oscillation and fractional biological population equations

被引:2
作者
Chanchlani, Lata [1 ]
Agrawal, Mohini [2 ]
Pandey, Rupakshi Mishra [2 ]
Purohit, Sunil Dutt [3 ]
Suthar, D. L. [4 ,5 ]
机构
[1] Univ Rajasthan, Dept Math, Jaipur, Rajasthan, India
[2] Amity Univ, Dept Math, Noida, Uttar Pradesh, India
[3] Rajasthan Tech Univ, Dept HEAS Math, Kota, Rajasthan, India
[4] Wollo Univ, Dept Math, Dessie, Ethiopia
[5] Wollo Univ, Dept Math, POB 1145, Dessie, Ethiopia
来源
APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING | 2023年 / 31卷 / 01期
关键词
Elzaki transform; Adomian decomposition method; fractional relaxation oscillation equation; fractional biological population equation;
D O I
10.1080/27690911.2022.2154766
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Elzaki decomposition method (EDM) is adopted to deal with the fractional-order relaxation and damped oscillation equation along with time-fractional spatial diffusion biological population model in different suitable habitat situations. In accordance with the graphs for the solutions obtained, the fractional relaxation exhibits super-slow phenomenon due to its extended descent, and fractional damped oscillation is an intermediate process that explains damped oscillation dynamic systems induced by some attenuated oscillations. The biological population model of time-fractional spatial diffusion depicts a rapid rise in population density in an ecosystem in a suitable habitat that is migrating from an unfavourable zone.
引用
收藏
页数:14
相关论文
共 33 条
[1]   Damping characteristics of a fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Clarke, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 339 (3-4) :311-319
[2]   Dynamics of the fractional oscillator [J].
Achar, BNN ;
Hanneken, JW ;
Enck, T ;
Clarke, T .
PHYSICA A, 2001, 297 (3-4) :361-367
[3]  
Ali I, 2014, I C FRACTIONAL DIFF, DOI 10.1109/ICFDA.2014.6967428
[4]   Fractional diffusion models of cardiac electrical propagation: role of structural heterogeneity in dispersion of repolarization [J].
Bueno-Orovio, Alfonso ;
Kay, David ;
Grau, Vicente ;
Rodriguez, Blanca ;
Burrage, Kevin .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2014, 11 (97)
[5]   Numerical analysis of Atangana-Baleanu fractional model to understand the propagation of a novel corona virus pandemic [J].
Butt, A. I. K. ;
Ahmad, W. ;
Rafiq, M. ;
Baleanu, D. .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (09) :7007-7027
[6]   Design and numerical analysis of fuzzy nonstandard computational methods for the solution of rumor based fuzzy epidemic model [J].
Dayan, Fazal ;
Rafiq, Muhammad ;
Ahmed, Nauman ;
Baleanu, Dumitru ;
Raza, Ali ;
Ahmad, Muhammad Ozair ;
Iqbal, Muhammad .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 600
[7]  
Elzaki MT., 2013, WORLD APPL SCI J, V24, P944, DOI DOI 10.5829/idosi.wasj.2013.24.07.1041
[8]  
Elzaki T.M., 2011, Glob. J. Pure Appl. Math., V7, P65
[9]  
Elzaki T. M., 2015, International Journal of Mathematical Analysis, V9, P1065
[10]  
Elzaki T.M., 2011, Global Journal of Pure and Applied Mathematics, V7, P57