Hydrogel Extrusion Speed Measurements for the Optimization of Bioprinting Parameters

被引:2
作者
Arjoca, Stelian [1 ,2 ]
Bojin, Florina [1 ,3 ]
Neagu, Monica [1 ,2 ]
Paunescu, Andreea [4 ]
Neagu, Adrian [1 ,2 ,5 ]
Paunescu, Virgil [1 ,3 ]
机构
[1] Victor Babes Univ Med & Pharm Timisoara, Dept Funct Sci, Timisoara 300041, Romania
[2] Victor Babes Univ Med & Pharm Timisoara, Ctr Modeling Biol Syst & Data Anal, Timisoara 300041, Romania
[3] OncoGen Inst, Timisoara 300723, Romania
[4] Carol Davila Univ Med & Pharm Bucharest, Bucharest 050474, Romania
[5] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
关键词
extrusion-based bioprinting; pneumatic extrusion; hydrogel flow rate; printing speed; 3D; SWELL;
D O I
10.3390/gels10020103
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Three-dimensional (3D) bioprinting is the use of computer-controlled transfer processes for assembling bioinks (cell clusters or materials loaded with cells) into structures of prescribed 3D organization. The correct bioprinting parameters ensure a fast and accurate bioink deposition without exposing the cells to harsh conditions. This study seeks to optimize pneumatic extrusion-based bioprinting based on hydrogel flow rate and extrusion speed measurements. We measured the rate of the hydrogel flow through a cylindrical nozzle and used non-Newtonian hydrodynamics to fit the results. From the videos of free-hanging hydrogel strands delivered from a stationary print head, we inferred the extrusion speed, defined as the speed of advancement of newly formed strands. Then, we relied on volume conservation to evaluate the extrudate swell ratio. The theoretical analysis enabled us to compute the extrusion speed for pressures not tested experimentally as well as the printing speed needed to deposit hydrogel filaments of a given diameter. Finally, the proposed methodology was tested experimentally by analyzing the morphology of triple-layered square-grid hydrogel constructs printed at various applied pressures while the printing speeds matched the corresponding extrusion speeds. Taken together, the results of this study suggest that preliminary measurements and theoretical analyses can simplify the search for the optimal bioprinting parameters.
引用
收藏
页数:11
相关论文
共 33 条
  • [1] [Anonymous], 2019, Ref No: SDS-IK-190000
  • [2] Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity
    Blaeser, Andreas
    Campos, Daniela Filipa Duarte
    Puster, Uta
    Richtering, Walter
    Stevens, Molly M.
    Fischer, Horst
    [J]. ADVANCED HEALTHCARE MATERIALS, 2016, 5 (03) : 326 - 333
  • [3] Bioprinting Cell- and Spheroid-Laden Protein-Engineered Hydrogels as Tissue-on-Chip Platforms
    Campos, Daniela F. Duarte
    Lindsay, Christopher D.
    Roth, Julien G.
    LeSavage, Bauer L.
    Seymour, Alexis J.
    Krajina, Brad A.
    Ribeiro, Ricardo
    Costa, Pedro F.
    Blaeser, Andreas
    Heilshorn, Sarah C.
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [4] Modeling of the flow rate in the dispensing-based process for fabricating tissue scaffolds
    Chen, X. B.
    Li, M. G.
    Ke, H.
    [J]. JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (02): : 0210031 - 0210037
  • [5] The rheology of direct and suspended extrusion bioprinting
    Cooke, Megan E.
    Rosenzweig, Derek H.
    [J]. APL BIOENGINEERING, 2021, 5 (01)
  • [6] Evaluation of Printing Parameters on 3D Extrusion Printing of Pluronic Hydrogels and Machine Learning Guided Parameter Recommendation
    Fu, Zhouquan
    Angeline, Vincent
    Sun, Wei
    [J]. INTERNATIONAL JOURNAL OF BIOPRINTING, 2021, 7 (04) : 179 - 189
  • [7] A definition of bioinks and their distinction from biomaterial inks
    Groll, J.
    Burdick, J. A.
    Cho, D-W
    Derby, B.
    Gelinsky, M.
    Heilshorn, S. C.
    Juengst, T.
    Malda, J.
    Mironov, V. A.
    Nakayama, K.
    Ovsianikov, A.
    Sun, W.
    Takeuchi, S.
    Yoo, J. J.
    Woodfield, T. B. F.
    [J]. BIOFABRICATION, 2019, 11 (01)
  • [8] Biofabrication: reappraising the definition of an evolving field
    Groll, Juergen
    Boland, Thomas
    Blunk, Torsten
    Burdick, Jason A.
    Cho, Dong-Woo
    Dalton, Paul D.
    Derby, Brian
    Forgacs, Gabor
    Li, Qing
    Mironov, Vladimir A.
    Moroni, Lorenzo
    Nakamura, Makoto
    Shu, Wenmiao
    Takeuchi, Shoji
    Vozzi, Giovanni
    Woodfield, Tim B. F.
    Xu, Tao
    Yoo, James J.
    Malda, Jos
    [J]. BIOFABRICATION, 2016, 8 (01)
  • [9] Bioprinting is coming of age: report from the International Conference on Bioprinting and Biofabrication in Bordeaux (3B'09)
    Guillemot, Fabien
    Mironov, Vladimir
    Nakamura, Makoto
    [J]. BIOFABRICATION, 2010, 2 (01)
  • [10] Strategies and Molecular Design Criteria for 3D Printable Hydrogels
    Jungst, Tomasz
    Smolan, Willi
    Schacht, Kristin
    Scheibel, Thomas
    Groll, Juergen
    [J]. CHEMICAL REVIEWS, 2016, 116 (03) : 1496 - 1539