Super-resolution imaging based on cascaded microsphere compound lenses

被引:7
作者
Wang, Jianming [1 ]
Yang, Benrui [1 ]
Chen, Zhiling [1 ]
Wen, Min [2 ]
Xie, Wei [3 ]
Wang, Dong [1 ]
Qi, Mengping [1 ]
Guo, Honhmei [1 ]
Cao, Yurong [1 ]
机构
[1] Nanjing Normal Univ, Sch Comp & Elect Informat, Nanjing 210023, Peoples R China
[2] Fujian Normal Univ, Coll Phys & Energy, Fuzhou 350108, Peoples R China
[3] Jingdezhen Coll, Coll Biol & Environm Engn, Jingdezhen 333000, Peoples R China
基金
中国国家自然科学基金;
关键词
RESOLUTION; MICROSCOPY; LIMIT;
D O I
10.1364/AO.501397
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a cascaded microsphere compound lens (CMCL) is introduced, in which a 20-mu m-diameter barium titanate glass (BTG) primary microsphere and a 250-nm-diameter or 200-nm-diameter polystyrene (PS) secondary microsphere array constitute CMCL1 and CMCL2, respectively. The field of view (FOV) depends on the size of the BTG microsphere, while the waist of the photon nanojet (PNJ) can be adjusted by the size of the PS microsphere. The narrower the waist of the PNJ, the higher the imaging resolution. In the experiment, a 200-nm-diameter hexagonally close-packed PS nanoparticle array is successfully observed by the CMCL with a high magnification of similar to 11.6x and a FOV of similar to 14 mu m, while the single BTG microsphere is incapable of observing the array. The point spread function is used to quantify the resolution of the CMCL. A well-designed CMCL can improve the imaging performances of a microsphere-assisted microscope. (c) 2023 Optica Publishing Group
引用
收藏
页码:7868 / 7872
页数:5
相关论文
共 29 条
[1]   Localized plasmonic structured illumination microscopy with an optically trapped microlens [J].
Bezryadina, Anna ;
Li, Jinxing ;
Zhao, Junxiang ;
Kothambawala, Alefia ;
Ponsetto, Joseph ;
Huang, Eric ;
Wang, Joseph ;
Liu, Zhaowei .
NANOSCALE, 2017, 9 (39) :14907-14912
[2]   Surface plasmon enhancement for microsphere-assisted super-resolution imaging of metallodielectric nanostructures [J].
Cao, Yurong ;
Yang, Songlin ;
Wang, Jianguo ;
Shi, Qinfang ;
Ye, Yong-Hong .
JOURNAL OF APPLIED PHYSICS, 2020, 127 (23)
[3]  
Darafsheh A., 2013, Optical super-resolution and periodical focusing effects by dielectric microspheres
[4]   Super-resolution imaging properties of cascaded microsphere lenses [J].
Deng, Yun ;
Yang, Songlin ;
Xia, Yang ;
Cao, Yurong ;
Wang, Jianguo ;
Wang, Fengge ;
Ye, Yong-Hong .
APPLIED OPTICS, 2018, 57 (20) :5578-5582
[5]   NEAR-FIELD OPTICAL-SCANNING MICROSCOPY [J].
DURIG, U ;
POHL, DW ;
ROHNER, F .
JOURNAL OF APPLIED PHYSICS, 1986, 59 (10) :3318-3327
[6]   Sub-diffraction-limited optical imaging with a silver superlens [J].
Fang, N ;
Lee, H ;
Sun, C ;
Zhang, X .
SCIENCE, 2005, 308 (5721) :534-537
[7]   BREAKING THE DIFFRACTION RESOLUTION LIMIT BY STIMULATED-EMISSION - STIMULATED-EMISSION-DEPLETION FLUORESCENCE MICROSCOPY [J].
HELL, SW ;
WICHMANN, J .
OPTICS LETTERS, 1994, 19 (11) :780-782
[8]   A polychromatic approach to far-field superlensing at visible wavelengths [J].
Lemoult, Fabrice ;
Fink, Mathias ;
Lerosey, Geoffroy .
NATURE COMMUNICATIONS, 2012, 3
[9]   Enhanced high-quality super-resolution imaging in air using microsphere lens groups [J].
Luo, Hao ;
Yu, Haibo ;
Wen, Yangdong ;
Zhang, Tianyao ;
Li, Pan ;
Wang, Feifei ;
Liu, Lianqing .
OPTICS LETTERS, 2020, 45 (11) :2981-2984
[10]   Resolution and Reciprocity in Microspherical Nanoscopy: Point-Spread Function Versus Photonic Nanojets [J].
Maslov, A. V. ;
Astratov, V. N. .
PHYSICAL REVIEW APPLIED, 2019, 11 (06)