Causal Inference-Based Debiasing Framework for Knowledge Graph Completion

被引:3
|
作者
Ren, Lin [1 ]
Liu, Yongbin [1 ]
Ouyang, Chunping [1 ]
机构
[1] Univ South China, Hengyang, Peoples R China
来源
SEMANTIC WEB, ISWC 2023, PART I | 2023年 / 14265卷
基金
中国国家自然科学基金;
关键词
Knowledge Graph Completion; Causal Inference; Link Prediction;
D O I
10.1007/978-3-031-47240-4_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The task of Knowledge Graph Completion (KGC) entails inferring missing relations and facts in a partially specified graph to discover new knowledge. However, the discrepancy in the targets between the training and inference phases might lead to in-depth bias and in-breadth bias during inference, potentially resulting in incorrect outcomes. In this work, we conduct a comprehensive analysis of these biases to determine their extent of impact. To mitigate these biases, we propose a novel debiasing framework called Causal Inference-based Debiasing Framework for KGC (CIDF) by formulating a causal graph and utilizing it for causal analysis of KGC tasks. The framework incorporates In-Depth Bias Mitigation to diminish the bias on feature representations by measuring the bias during inference, and In-Breadth Bias Mitigation to increase the distinguishability between feature representations by introducing a novel loss function. We evaluate the effectiveness of our proposed method on four benchmark datasets - WN18RR, FB15k-237, Wikidata5M-Trans, and Wikidata5M-Ind, achieving improvements of 2.5%, 0.9%, 3.2%, and 1.5% on Hit@1 respectively. Our results demonstrate that CIDF leads to significant improvements on these datasets, with more substantial gains observed in the biased settings on WN18RR achieving a 3.4% improvement in Hit@1.
引用
收藏
页码:328 / 347
页数:20
相关论文
共 50 条
  • [1] Causal Inference for Knowledge Graph Based Recommendation
    Wei, Yinwei
    Wang, Xiang
    Nie, Liqiang
    Li, Shaoyu
    Wang, Dingxian
    Chua, Tat-Seng
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (11) : 11153 - 11164
  • [2] A Survey on Debiasing Recommendation Based on Causal Inference
    Yang, Xin-Xin
    Liu, Zhen
    Lu, Si-Bo
    Yuan, Ya-Fan
    Sun, Yong-Qi
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (10): : 2307 - 2332
  • [3] A Causal Inference-Based Speed Control Framework for Discretionary Lane-Changing Processes
    Zhou, Zhen
    Zhao, Yi
    Li, Minghao
    Bao, Yuyang
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2023, 149 (08)
  • [4] Cluster Robust Inference for Embedding-Based Knowledge Graph Completion
    Schramm, Simon
    Niklas, Ulrich
    Schmid, Ute
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 284 - 299
  • [5] Causal Inference-Based Study of Key Contributors to Industrial Accidents
    Okki, Saci
    Chebila, Mourad
    Nait-Said, Rachid
    ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART A-CIVIL ENGINEERING, 2024, 10 (01):
  • [6] Rating Prediction Model Based on Causal Inference Debiasing Method in Recommendation
    Nan Jiangang
    Wang Yajun
    Wang Chengcheng
    CHINESE JOURNAL OF ELECTRONICS, 2023, 32 (04) : 932 - 940
  • [7] Knowledge graph completion based on graph contrastive attention network
    Liu D.
    Fang Q.
    Zhang X.
    Hu J.
    Qian S.
    Xu C.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2022, 48 (08): : 1428 - 1435
  • [8] Geography-Enhanced Link Prediction Framework for Knowledge Graph Completion
    Wang, Yashen
    Zhang, Huanhuan
    Xie, Haiyong
    KNOWLEDGE GRAPH AND SEMANTIC COMPUTING: KNOWLEDGE COMPUTING AND LANGUAGE UNDERSTANDING, 2019, 1134 : 198 - 210
  • [9] CausalABSC: Causal Inference for Aspect Debiasing in Aspect-Based Sentiment Classification
    Zhou, Jie
    Lin, Yuanbiao
    Chen, Qin
    Zhang, Qi
    Huang, Xuanjing
    He, Liang
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 830 - 840
  • [10] A Re-Ranking Framework for Knowledge Graph Completion
    Wang, Zikang
    Li, Linjing
    Zeng, Daniel Dajun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,