Cancer Prediction Using Feature Fusion and Taylor-TSA-Based GAN with Gene Expression Data

被引:1
作者
Jeyabharathi, J. [1 ]
Velliangiri, S. [2 ]
Joseph, S. Iwin Thanakumar [3 ]
Devadass, C. Chandra Sorna [4 ]
机构
[1] Kalasalingam Acad Res & Educ, Dept Comp Sci & Engn, Krishnan koil 626126, Tamil Nadu, India
[2] SRM Inst Sci & Technol, Dept Computat Intelligence, Kattankulathur 603203, Tamil Nadu, India
[3] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Vaddeswaram 522302, Andhra Pradesh, India
[4] Jawaharlal Coll Engn & Technol, Dept Civil Engn, Palakkad 679301, Kerala, India
关键词
Cancer prediction; data transformation; gene expression data; deep learning; feature fusion; FEATURE-SELECTION; ENSEMBLE; ALGORITHM; FRAMEWORK; MODEL;
D O I
10.1142/S0218001423570082
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This research paper develops an efficient model, named Taylor-Tunicate Swarm Algorithm-based Generative Adversarial Networks (Taylor-TSA-based GANs) for cancer prediction. The developed Taylor-TSA incorporates the Taylor series with Tunicate Swarm Algorithm (TSA) algorithm. The Yeo-Johnson (YJ) transformation is employed for the data transformation. The feature fusion is evaluated by Deep Stacked Autoencoder (Deep SAE). The fused feature is given as input to the cancer prediction done by GAN trained by Taylor-TSA. The developed model is an effective and efficient use of information with clinical data. The Taylor-TSA-based GAN is analyzed in terms of accuracy, False Positive Rate (FPR), and True Positive Rate (TPR) with the values of 0.9184, 0.1782, and 0.9246.
引用
收藏
页数:21
相关论文
共 54 条
  • [1] Gene expression cancer classification using modified K-Nearest Neighbors technique
    Ayyad, Sarah M.
    Saleh, Ahmed, I
    Labib, Labib M.
    [J]. BIOSYSTEMS, 2019, 176 : 41 - 51
  • [2] Bishop C. M., 2007, Pattern Recognition and Machine Learning Information Science and Statistics, V1st
  • [3] Pancreatic enzyme supplementation after gastrectomy for gastric cancer: a randomized controlled trial
    Catarci, Marco
    Berlanda, Manuele
    Grassi, Giovanni Battista
    Masedu, Francesco
    Guadagni, Stefano
    [J]. GASTRIC CANCER, 2018, 21 (03) : 542 - 551
  • [4] Gene expression data clustering based on graph regularized subspace segmentation
    Chen, Xiaoyun
    Jian, Cairen
    [J]. NEUROCOMPUTING, 2014, 143 : 44 - 50
  • [5] Clustering cancer gene expression data: a comparative study
    de Souto, Marcilio C. P.
    Costa, Ivan G.
    de Araujo, Daniel S. A.
    Ludermir, Teresa B.
    Schliep, Alexander
    [J]. BMC BIOINFORMATICS, 2008, 9 (1)
  • [6] DeRisi J, 1996, NAT GENET, V14, P457
  • [7] Hybrid Method Based on Information Gain and Support Vector Machine for Gene Selection in Cancer Classification
    Gao, Lingyun
    Ye, Mingquan
    Lu, Xiaojie
    Huang, Daobin
    [J]. GENOMICS PROTEOMICS & BIOINFORMATICS, 2017, 15 (06) : 389 - 395
  • [8] Gu J., 2019, ARXIV
  • [9] Precision oncotherapy based on liquid biopsies in multidisciplinary treatment of unresectable recurrent rectal cancer: a retrospective cohort study
    Guadagni, Stefano
    Fiorentini, Giammaria
    De Simone, Michele
    Masedu, Francesco
    Zoras, Odisseas
    Mackay, Andrew Reay
    Sarti, Donatella
    Papasotiriou, Ioannis
    Apostolou, Panagiotis
    Catarci, Marco
    Clementi, Marco
    Ricevuto, Enrico
    Bruera, Gemma
    [J]. JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2020, 146 (01) : 205 - 219
  • [10] Active learning using rough fuzzy classifier for cancer prediction from microarray gene expression data
    Halder, Anindya
    Kumar, Ansuman
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2019, 92