3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers

被引:2
|
作者
Thawakar, Omkar [1 ]
Anwer, Rao Muhammad [1 ,2 ]
Laaksonen, Jorma [2 ]
Reiner, Orly [3 ]
Shah, Mubarak [4 ]
Khan, Fahad Shahbaz [1 ,5 ]
机构
[1] MBZUAI, Masdar City, U Arab Emirates
[2] Aalto Univ, Espoo, Finland
[3] Weizmann Inst Sci, Rehovot, Israel
[4] Univ Cent Florida, Orlando, FL 32816 USA
[5] Linkoping Univ, Linkoping, Sweden
关键词
Electron Microscopy; Mitochondria instance segmentation; Spatio-Temporal Transformer; Hybrid CNN-Transformers;
D O I
10.1007/978-3-031-43993-3_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate 3D mitochondria instance segmentation in electron microscopy (EM) is a challenging problem and serves as a prerequisite to empirically analyze their distributions and morphology. Most existing approaches employ 3D convolutions to obtain representative features. However, these convolution-based approaches struggle to effectively capture long-range dependencies in the volume mitochondria data, due to their limited local receptive field. To address this, we propose a hybrid encoder-decoder framework based on a split spatio-temporal attention module that efficiently computes spatial and temporal self-attentions in parallel, which are later fused through a deformable convolution. Further, we introduce a semantic foreground-background adversarial loss during training that aids in delineating the region of mitochondria instances from the background clutter. Our extensive experiments on three benchmarks, Lucchi, MitoEM-R and MitoEM-H, reveal the benefits of the proposed contributions achieving state-of-the-art results on all three datasets. Our code and models are available at https://github.com/ OmkarThawakar/STT- UNET.
引用
收藏
页码:613 / 623
页数:11
相关论文
共 50 条
  • [41] Spatio-temporal approach to shape and motion measurements of 3D objects
    Kujawinska, M
    Pawlowski, M
    LASER INTERFEROMETRY X: TECHNIQUES AND ANALYSIS AND APPLICATIONS, PTS A AND B, 2000, 4101 : 21 - 28
  • [42] Discriminative Spatio-Temporal Pattern Discovery for 3D Action Recognition
    Weng, Junwu
    Weng, Chaoqun
    Yuan, Junsong
    Liu, Zicheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2019, 29 (04) : 1077 - 1089
  • [43] Spatio-temporal 3D pose estimation of objects in stereo images
    Barrois, Bjoern
    Woehler, Christian
    COMPUTER VISION SYSTEMS, PROCEEDINGS, 2008, 5008 : 507 - 516
  • [44] Spatio-temporal mobility and Twitter: 3D visualisation of mobility flows
    Osorio Arjona, Joaquin
    Garcia Palomares, Juan Carlos
    JOURNAL OF MAPS, 2020, 16 (01): : 153 - 160
  • [45] 3D Gait Recognition Using Spatio-Temporal Motion Descriptors
    Kwolek, Bogdan
    Krzeszowski, Tomasz
    Michalczuk, Agnieszka
    Josinski, Henryk
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, 2014, 8398 : 595 - 604
  • [46] Local Spatio-Temporal Representation Using the 3D Shearlet Transform
    Damiano Malafronte
    Ernesto De Vito
    Francesca Odone
    Sampling Theory in Signal and Image Processing, 2018, 17 (1): : 57 - 72
  • [47] Spatio-temporal descriptor using 3D curvature scale space
    Dyana, A.
    Das, Sukhendu
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2007, 4815 : 632 - 640
  • [48] Attention guided spatio-temporal network for 3D signature recognition
    Singh, Aradhana Kumari
    Koundal, Deepika
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33985 - 33997
  • [49] Local Spatio-Temporal Representation using the 3D Shearlet Transform
    Malafronte, Damiano
    Odone, Francesca
    De Vito, Ernesto
    2017 INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2017, : 585 - 589
  • [50] SPATIO-TEMPORAL MODELING OF VISUAL ATTENTION FOR STEREOSCOPIC 3D VIDEO
    Iatsun, Iana
    Larabi, Mohamed-Chaker
    Fernandez-Maloigne, Christine
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5397 - 5401