3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers

被引:2
|
作者
Thawakar, Omkar [1 ]
Anwer, Rao Muhammad [1 ,2 ]
Laaksonen, Jorma [2 ]
Reiner, Orly [3 ]
Shah, Mubarak [4 ]
Khan, Fahad Shahbaz [1 ,5 ]
机构
[1] MBZUAI, Masdar City, U Arab Emirates
[2] Aalto Univ, Espoo, Finland
[3] Weizmann Inst Sci, Rehovot, Israel
[4] Univ Cent Florida, Orlando, FL 32816 USA
[5] Linkoping Univ, Linkoping, Sweden
关键词
Electron Microscopy; Mitochondria instance segmentation; Spatio-Temporal Transformer; Hybrid CNN-Transformers;
D O I
10.1007/978-3-031-43993-3_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate 3D mitochondria instance segmentation in electron microscopy (EM) is a challenging problem and serves as a prerequisite to empirically analyze their distributions and morphology. Most existing approaches employ 3D convolutions to obtain representative features. However, these convolution-based approaches struggle to effectively capture long-range dependencies in the volume mitochondria data, due to their limited local receptive field. To address this, we propose a hybrid encoder-decoder framework based on a split spatio-temporal attention module that efficiently computes spatial and temporal self-attentions in parallel, which are later fused through a deformable convolution. Further, we introduce a semantic foreground-background adversarial loss during training that aids in delineating the region of mitochondria instances from the background clutter. Our extensive experiments on three benchmarks, Lucchi, MitoEM-R and MitoEM-H, reveal the benefits of the proposed contributions achieving state-of-the-art results on all three datasets. Our code and models are available at https://github.com/ OmkarThawakar/STT- UNET.
引用
收藏
页码:613 / 623
页数:11
相关论文
共 50 条
  • [1] Spatio-temporal segmentation using 3D morphological tools
    Vincent, A
    Christian, R
    Fabrice, H
    15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING, 2000, : 877 - 880
  • [2] 3D SPATIO-TEMPORAL GRAPH CUTS FOR VIDEO OBJECTS SEGMENTATION
    Tian, Zhiqiang
    Xue, Jianru
    Zheng, Nanning
    Lan, Xuguang
    Li, Ce
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [3] Spatio-temporal Attention Network for Video Instance Segmentation
    Liu, Xiaoyu
    Ren, Haibing
    Ye, Tingmeng
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 725 - 727
  • [4] 3D Mesh Animation Compression based on Adaptive Spatio-temporal Segmentation
    Luo, Guoliang
    Deng, Zhigang
    Jin, Xiaogang
    Zhao, Xin
    Zeng, Wei
    Xie, Wenqiang
    Seo, Hyewon
    ACM SIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES (I3D 2019), 2019,
  • [5] Segmentation of 3D radio frequency echocardiography using a spatio-temporal predictor
    Pearlman, P. C.
    Tagare, H. D.
    Lin, B. A.
    Sinusas, A. J.
    Duncan, J. S.
    MEDICAL IMAGE ANALYSIS, 2012, 16 (02) : 351 - 360
  • [6] Segmentation of 3D RF Echocardiography Using a Multiframe Spatio-temporal Predictor
    Pearlman, Paul C.
    Tagare, Hemant D.
    Lin, Ben A.
    Sinusas, Albert J.
    Duncan, James S.
    INFORMATION PROCESSING IN MEDICAL IMAGING, 2011, 6801 : 37 - 48
  • [7] ADVANCED DEEP NETWORKS FOR 3D MITOCHONDRIA INSTANCE SEGMENTATION
    Li, Mingxing
    Chen, Chang
    Liu, Xiaoyu
    Huang, Wei
    Zhang, Yueyi
    Xiong, Zhiwei
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [8] Spatio-temporal segmentation
    Swain, C
    Puri, A
    VISUAL COMMUNICATIONS AND IMAGE PROCESSING '99, PARTS 1-2, 1998, 3653 : 1233 - 1236
  • [9] A Spatio-Temporal 3D Representation of a Historic Dataset
    Papasarantou, Chrissa
    Kalaouzis, Giorgos
    Pentazou, Ioulia
    Bourdakis, Vassilis
    ECAADE 2015: REAL TIME - EXTENDING THE REACH OF COMPUTATION, VOL 1, 2015, : 701 - 708
  • [10] Spatio-Temporal Reconstruction for 3D Motion Recovery
    Yang, Jingyu
    Guo, Xin
    Li, Kun
    Wang, Meiyuan
    Lai, Yu-Kun
    Wu, Feng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1583 - 1596