On the structure of some nonlinear maps in prime *-rings

被引:0
作者
Siddeeque, Mohammad Aslam [1 ]
Shikeh, Abbas Hussain [1 ]
Bhat, Raof Ahmad [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
Involution; prime ring; skew Lie product; strong skew commutativity preserving map; COMMUTATIVITY PRESERVING-MAPS; LIE TRIPLE PRODUCTS;
D O I
10.2298/FIL2401261S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The objective of this paper is to introduce the notion of skew Lie centralizers in *-rings, and to investigate the structure of skew Lie centralizers and strong skew commutativity preserving maps in prime *-rings without assuming the existence of a symmetric idempotent and the unital element. As an application, we shall characterize such maps in different operator algebras.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 26 条
  • [1] Abbasi A, 2022, B IRAN MATH SOC, V48, P2765, DOI 10.1007/s41980-021-00665-w
  • [2] Maps preserving products XY-YX* on von Neumann algebras
    Bai, Zhaofang
    Du, Shuanping
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 386 (01) : 103 - 109
  • [3] Beidar K. I., 1996, Pure and Applied Mathematics, V196
  • [4] Bresar M., 2007, FUNCTIONAL IDENTITIE
  • [5] Cui JL, 2012, ACTA MATH SCI, V32, P531
  • [6] Maps preserving product XY-YX* on factor von Neumann algebras
    Cui, Jianlian
    Li, Chi-Kwong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 833 - 842
  • [7] Centralizers of Lie Structure of Triangular Algebras
    Fadaee, B.
    Fosner, A.
    Ghahramani, H.
    [J]. RESULTS IN MATHEMATICS, 2022, 77 (06)
  • [8] LIE CENTRALIZERS ON TRIANGULAR RINGS AND NEST ALGEBRAS
    Fosner, Ajda
    Jing, Wu
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 342 - 350
  • [9] Herstein I.N., 1976, Chicago Lectures in Mathematics
  • [10] Strong 2-skew Commutativity Preserving Maps on Prime Rings with Involution
    Hou, Jinchuan
    Wang, Wei
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (01) : 33 - 49