Systematic engineering of BiVO4 photoanode for efficient photoelectrochemical water oxidation

被引:17
|
作者
Liang, Zhiting [1 ]
Li, Meng [1 ]
Ye, Kai-Hang [1 ,2 ]
Tang, Tongxin [1 ]
Lin, Zhan [1 ,2 ]
Zheng, Yuying [1 ]
Huang, Yongchao [3 ]
Ji, Hongbing [1 ,4 ]
Zhang, Shanqing [1 ,5 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou Key Lab Clean Transportat Energy Chem, Guangzhou 510006, Peoples R China
[2] Chem Engn Guangdong Lab, Jieyang Branch Chem, Jieyang, Peoples R China
[3] Guangzhou Univ, Inst Environm Res Greater Bay Area, Key Lab Water Qual & Conservat Pearl River Delta, Minist Educ, Guangzhou 510006, Peoples R China
[4] Zhejiang Univ Technol, Inst Green Petr Proc & Light Hydrocarbon Convers, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Techn, Hangzhou, Peoples R China
[5] Griffith Univ, Ctr Catalysis & Clean Energy, Sch Environm & Sci, Gold Coast Campus, Southport, Qld, Australia
关键词
bismuth vanadate; carbon nitride; charge separation; heterojunction; water oxidation; PERFORMANCE; NANOSHEETS;
D O I
10.1002/cey2.413
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BiVO4 is one of the most promising photoanode materials for photoelectrochemical (PEC) solar energy conversion, but it still suffers from poor photocurrent density due to insufficient light-harvesting efficiency (LHE), weak photogenerated charge separation efficiency (f(Sep)), and low water oxidation efficiency (f(OX)). Herein, we tackle these challenges of the BiVO4 photoanodes using systematic engineering, including catalysis engineering, bandgap engineering, and morphology engineering. In particular, we deposit a NiCoOx layer onto the BiVO4 photoanode as the oxygen evolution catalyst to enhance the f(OX) of Fe-g-C3N4/BiVO4 for PEC water oxidation, and incorporate Fe-doped graphite-phase C3N4 (Fe-g-C3N4) into the BiVO4 photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm, increase the LHE and f(Sep), and further improve the oxygen evolution reaction activity of the NiCoOx catalytic layer. Consequently, the maximum photocurrent density of the as-prepared NiCoOx/Fe-g-C3N4/BiVO4 is remarkably boosted from 4.6 to 7.4 mA cm-2. This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE, f(Sep), and f(OX) of BiVO4-based photoanodes, which will substantially benefit the design, preparation, and large-scale application of next-generation high-performance photoanodes.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Enhancement of the photoelectrochemical performance of bismuth vanadate (BiVO4) photoanode by building a W:BiVO4/Mo:BiVO4 Homojunction
    Kim, Ji Hyun
    Jeong, Seung Hyeon
    Hong, Aram
    Pan, Zhenhua
    Katayama, Kenji
    Sohn, Woon Yong
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2025, 46 (03) : 301 - 309
  • [42] Effective Improvement of Thermodynamics and Kinetics of BiVO4 Photoanode via CuI for Photoelectrochemical Water Oxidation
    Guan, Yuan
    Shen, Zheng
    Gu, Xinyi
    Wu, Dayu
    Wang, Shaomang
    Li, Zhongyu
    Yan, Shicheng
    Zou, Zhigang
    LANGMUIR, 2024, 40 (48) : 25679 - 25691
  • [43] Photoelectrochemical performance of a ternary WO3/BiVO4/NiCo 3 /BiVO 4 /NiCo LDH photoanode for high-efficiency water oxidation
    Kim, Dohyun
    Baek, Seong-Ho
    CERAMICS INTERNATIONAL, 2024, 50 (18) : 32706 - 32716
  • [44] Elucidating the Role of Hypophosphite Treatment in Enhancing the Performance of BiVO4 Photoanode for Photoelectrochemical Water Oxidation
    Wang, Qingjie
    Wu, Linxiao
    Zhang, Zhuang
    Cheng, Jinshui
    Chen, Rong
    Liu, Yang
    Luo, Jingshan
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (23) : 26642 - 26652
  • [45] Construction and photoelectrochemical water oxidation performance of BiVO4/ZnFe2O4 homotypic heterojunction photoanode
    Fan Meng-Meng
    Wen Xiao-Jiang
    Tao Zi-Yang
    Zhao Qiang
    Li Jin-Ping
    Liu Guang
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2023, 39 (01) : 23 - 31
  • [46] Ultrathin g-C3N4/Mo:BiVO4 photoanode for enhanced photoelectrochemical water oxidation
    Zeng, Guihua
    Wang, Xiaojun
    Yu, Xiang
    Guo, Jia
    Zhu, Yi
    Zhang, Yuanming
    JOURNAL OF POWER SOURCES, 2019, 444
  • [47] Photoelectrochemical water splitting coupled with degradation of organic pollutants enhanced by surface and interface engineering of BiVO4 photoanode
    Liu, Jingchao
    Li, Jianming
    Li, Yanfei
    Guo, Jian
    Xu, Si-Min
    Zhang, Ruikang
    Shao, Mingfei
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 278
  • [48] Enhanced performance of NiF2/BiVO4 photoanode for photoelectrochemical water splitting
    Zhao, Ziwei
    Chen, Kaiyi
    Huang, Jingwei
    Wang, Lei
    She, Houde
    Wang, Qizhao
    FRONTIERS IN ENERGY, 2021, 15 (03) : 760 - 771
  • [49] Enhancing photoelectrochemical water oxidation activity of BiVO4 photoanode through the Co-catalytic effect of Ni(OH)2 and carbon quantum dots
    Tong, Haili
    Jiang, Yi
    Xia, Lixin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2023, 48 (94) : 36694 - 36706
  • [50] Enhancement in the photoelectrochemical performance of BiVO4 photoanode with high (040) facet exposure
    Lu, Xinxin
    Xiao, Jingran
    Peng, Lingling
    Zhang, Liwen
    Zhan, Guowu
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 : 726 - 735