Systematic engineering of BiVO4 photoanode for efficient photoelectrochemical water oxidation

被引:17
|
作者
Liang, Zhiting [1 ]
Li, Meng [1 ]
Ye, Kai-Hang [1 ,2 ]
Tang, Tongxin [1 ]
Lin, Zhan [1 ,2 ]
Zheng, Yuying [1 ]
Huang, Yongchao [3 ]
Ji, Hongbing [1 ,4 ]
Zhang, Shanqing [1 ,5 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou Key Lab Clean Transportat Energy Chem, Guangzhou 510006, Peoples R China
[2] Chem Engn Guangdong Lab, Jieyang Branch Chem, Jieyang, Peoples R China
[3] Guangzhou Univ, Inst Environm Res Greater Bay Area, Key Lab Water Qual & Conservat Pearl River Delta, Minist Educ, Guangzhou 510006, Peoples R China
[4] Zhejiang Univ Technol, Inst Green Petr Proc & Light Hydrocarbon Convers, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Techn, Hangzhou, Peoples R China
[5] Griffith Univ, Ctr Catalysis & Clean Energy, Sch Environm & Sci, Gold Coast Campus, Southport, Qld, Australia
关键词
bismuth vanadate; carbon nitride; charge separation; heterojunction; water oxidation; PERFORMANCE; NANOSHEETS;
D O I
10.1002/cey2.413
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BiVO4 is one of the most promising photoanode materials for photoelectrochemical (PEC) solar energy conversion, but it still suffers from poor photocurrent density due to insufficient light-harvesting efficiency (LHE), weak photogenerated charge separation efficiency (f(Sep)), and low water oxidation efficiency (f(OX)). Herein, we tackle these challenges of the BiVO4 photoanodes using systematic engineering, including catalysis engineering, bandgap engineering, and morphology engineering. In particular, we deposit a NiCoOx layer onto the BiVO4 photoanode as the oxygen evolution catalyst to enhance the f(OX) of Fe-g-C3N4/BiVO4 for PEC water oxidation, and incorporate Fe-doped graphite-phase C3N4 (Fe-g-C3N4) into the BiVO4 photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm, increase the LHE and f(Sep), and further improve the oxygen evolution reaction activity of the NiCoOx catalytic layer. Consequently, the maximum photocurrent density of the as-prepared NiCoOx/Fe-g-C3N4/BiVO4 is remarkably boosted from 4.6 to 7.4 mA cm-2. This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE, f(Sep), and f(OX) of BiVO4-based photoanodes, which will substantially benefit the design, preparation, and large-scale application of next-generation high-performance photoanodes.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Dual modification of BiVO4 photoanode for synergistically boosting photoelectrochemical water splitting
    Yin, Dan
    Ning, Xingming
    Zhang, Qi
    Du, Peiyao
    Lu, Xiaoquan
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 646 : 238 - 244
  • [32] An integrating photoanode consisting of BiVO4, rGO and LDH for photoelectrochemical water splitting
    Sun, Lixia
    Sun, Jianhua
    Yang, Xiaojun
    Bai, Shouli
    Feng, Yongjun
    Luo, Ruixian
    Li, Dianqing
    Chen, Aifan
    DALTON TRANSACTIONS, 2019, 48 (42) : 16091 - 16098
  • [33] Synergistic effect of Co doping and borate impregnation on BiVO4 photoanode for efficient photoelectrochemical water splitting
    Naing, Myat Thwe
    Hwang, Jun Beom
    Lee, Jeongsu
    Kim, Yejoon
    Jung, Yoonsung
    Lee, Sanghan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 55 : 234 - 242
  • [34] Construction of a Co-MOF/MXene/BiVO4 Composite Photoanode for Efficient Photoelectrochemical Water Splitting
    Zhong, Shiming
    Kang, Bokai
    Cheng, Xingxing
    Chen, Pengliang
    Fang, Baizeng
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 12 (03) : 1233 - 1246
  • [35] Charge Transport Enhancement in BiVO4 Photoanode for Efficient Solar Water Oxidation
    Li, Zhidong
    Xie, Zhibin
    Li, Weibang
    Aziz, Hafiz Sartaj
    Abbas, Muhammad
    Zheng, Zhuanghao
    Su, Zhenghua
    Fan, Ping
    Chen, Shuo
    Liang, Guangxing
    MATERIALS, 2023, 16 (09)
  • [36] A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation
    Sun, Qi
    Cheng, Ting
    Liu, Zhirong
    Qi, Limin
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 277
  • [37] A novel BiVO4/DLC heterojunction for efficient photoelectrochemical water splitting
    Yuan, Hewei
    Zhang, Yaozhong
    Su, Yanjie
    Hu, Nantao
    Yang, Jianhua
    Zeng, Min
    Yang, Zhi
    Zhang, Yafei
    CHEMICAL ENGINEERING JOURNAL, 2023, 459
  • [38] Synthesis of a monoclinic BiVO4 nanorod array as the photocatalyst for efficient photoelectrochemical water oxidation
    Xiao, Bing-Chang
    Lin, Lu-Yin
    Hong, Jia-Yo
    Lin, Hong-Syun
    Song, Yung-Tao
    RSC ADVANCES, 2017, 7 (13): : 7547 - 7554
  • [39] Fabrication of a BiVO4/CuCo2O4 Heterojunction Photoanode for Photoelectrochemical Water Splitting
    Wenfei, D.
    Yonglei, X.
    RUSSIAN JOURNAL OF GENERAL CHEMISTRY, 2025, 95 (03) : 572 - 579
  • [40] Efficient BiVO4 Photoanode with an Excellent Hole Transport Layer of CuSCN for Solar Water Oxidation
    Liu, Yan
    Zhang, Zhiyong
    Wang, Kang
    Tan, Xianglong
    Chen, Junru
    Ren, Xiaoliang
    Jiang, Feng
    ADVANCED ENERGY MATERIALS, 2024, 14 (17)