Systematic engineering of BiVO4 photoanode for efficient photoelectrochemical water oxidation

被引:25
作者
Liang, Zhiting [1 ]
Li, Meng [1 ]
Ye, Kai-Hang [1 ,2 ]
Tang, Tongxin [1 ]
Lin, Zhan [1 ,2 ]
Zheng, Yuying [1 ]
Huang, Yongchao [3 ]
Ji, Hongbing [1 ,4 ]
Zhang, Shanqing [1 ,5 ]
机构
[1] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou Key Lab Clean Transportat Energy Chem, Guangzhou 510006, Peoples R China
[2] Chem Engn Guangdong Lab, Jieyang Branch Chem, Jieyang, Peoples R China
[3] Guangzhou Univ, Inst Environm Res Greater Bay Area, Key Lab Water Qual & Conservat Pearl River Delta, Minist Educ, Guangzhou 510006, Peoples R China
[4] Zhejiang Univ Technol, Inst Green Petr Proc & Light Hydrocarbon Convers, Coll Chem Engn, State Key Lab Breeding Base Green Chem Synth Techn, Hangzhou, Peoples R China
[5] Griffith Univ, Ctr Catalysis & Clean Energy, Sch Environm & Sci, Gold Coast Campus, Southport, Qld, Australia
关键词
bismuth vanadate; carbon nitride; charge separation; heterojunction; water oxidation; PERFORMANCE; NANOSHEETS;
D O I
10.1002/cey2.413
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
BiVO4 is one of the most promising photoanode materials for photoelectrochemical (PEC) solar energy conversion, but it still suffers from poor photocurrent density due to insufficient light-harvesting efficiency (LHE), weak photogenerated charge separation efficiency (f(Sep)), and low water oxidation efficiency (f(OX)). Herein, we tackle these challenges of the BiVO4 photoanodes using systematic engineering, including catalysis engineering, bandgap engineering, and morphology engineering. In particular, we deposit a NiCoOx layer onto the BiVO4 photoanode as the oxygen evolution catalyst to enhance the f(OX) of Fe-g-C3N4/BiVO4 for PEC water oxidation, and incorporate Fe-doped graphite-phase C3N4 (Fe-g-C3N4) into the BiVO4 photoanode to optimize the bandgap and surface areas to subsequently expand the light absorption range of the photoanode from 530 to 690 nm, increase the LHE and f(Sep), and further improve the oxygen evolution reaction activity of the NiCoOx catalytic layer. Consequently, the maximum photocurrent density of the as-prepared NiCoOx/Fe-g-C3N4/BiVO4 is remarkably boosted from 4.6 to 7.4 mA cm-2. This work suggests that the proposed systematic engineering strategy is exceptionally promising for improving LHE, f(Sep), and f(OX) of BiVO4-based photoanodes, which will substantially benefit the design, preparation, and large-scale application of next-generation high-performance photoanodes.
引用
收藏
页数:10
相关论文
共 55 条
[1]   Floating perovskite-BiVO4 devices for scalable solar fuel production [J].
Andrei, Virgil ;
Ucoski, Geani M. ;
Pornrungroj, Chanon ;
Uswachoke, Chawit ;
Wang, Qian ;
Achilleos, Demetra S. ;
Kasap, Hatice ;
Sokol, Katarzyna P. ;
Jagt, Robert A. ;
Lu, Haijiao ;
Lawson, Takashi ;
Wagner, Andreas ;
Pike, Sebastian D. ;
Wright, Dominic S. ;
Hoye, Robert L. Z. ;
MacManus-Driscoll, Judith L. ;
Joyce, Hannah J. ;
Friend, Richard H. ;
Reisner, Erwin .
NATURE, 2022, 608 (7923) :518-+
[2]   A Heterogeneous Carbon Nitride-Nickel Photocatalyst for Efficient Low-Temperature CO2 Methanation [J].
Barrio, Jesus ;
Mateo, Diego ;
Albero, Josep ;
Garcia, Hermenegildo ;
Shalom, Menny .
ADVANCED ENERGY MATERIALS, 2019, 9 (44)
[3]   Review on BiVO4-Based Photoanodes for Photoelectrochemical Water Oxidation: The Main Influencing Factors [J].
Chen, Daoming ;
Xie, Zifei ;
Tong, Yexiang ;
Huang, Yongchao .
ENERGY & FUELS, 2022, 36 (17) :9932-9949
[4]   Strain Adjustment Realizes the Photocatalytic Overall Water Splitting on Tetragonal Zircon BiVO4 [J].
Dai, Dujuan ;
Liang, Xizhuang ;
Zhang, Beibei ;
Wang, Yuanyuan ;
Wu, Qian ;
Bao, Xiaolei ;
Wang, Zeyan ;
Zheng, Zhaoke ;
Cheng, Hefeng ;
Dai, Ying ;
Huang, Baibiao ;
Wang, Peng .
ADVANCED SCIENCE, 2022, 9 (15)
[5]   Mesoporous structure and amorphous Fe-N sites regulation in Fe-g-C3N4 for boosted visible-light-driven photo-Fenton reaction [J].
Ding, Chenjie ;
Kang, Shifei ;
Li, Wenxin ;
Gao, Weikang ;
Zhang, Zhihao ;
Zheng, Lulu ;
Cui, Lifeng .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 608 :2515-2528
[6]   Ultrathin graphitic C3N4 nanosheets as highly efficient metal-free cocatalyst for water oxidation [J].
Feng, Chenchen ;
Wang, Zhonghao ;
Ma, Ying ;
Zhang, Yajun ;
Wang, Lei ;
Bi, Yingpu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 205 :19-23
[7]   In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater [J].
Hu, Jinshan ;
Zhang, Pengfei ;
An, Weijia ;
Liu, Li ;
Liang, Yinghua ;
Cui, Wenquan .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 245 :130-142
[8]   Low-dimensional Mo:BiVO4 photoanodes for enhanced photoelectrochemical activity [J].
Huang, Miaoyan ;
Bian, Juncao ;
Xiong, Wei ;
Huang, Chao ;
Zhang, Ruiqin .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (08) :3602-3609
[9]   Crystal Reconstruction of Mo:BiVO4: Improved Charge Transport for Efficient Solar Water Splitting [J].
Jeong, Yoo Jae ;
Seo, Dong Hyun ;
Baek, Ji Hyun ;
Kang, Min Je ;
Kim, Bit Na ;
Kim, Sung Kyu ;
Zheng, Xiaolin ;
Cho, In Sun .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (52)
[10]   A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting [J].
Jin, Bingjun ;
Cho, Yoonjun ;
Park, Cheolwoo ;
Jeong, Jeehun ;
Kim, Sungsoon ;
Jin, Jie ;
Kim, Wooyul ;
Wang, Luyang ;
Lu, Siyu ;
Zhang, Shengli ;
Oh, Sang Ho ;
Zhang, Kan ;
Park, Jong Hyeok .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :672-679