Applications of artificial intelligence in clinical laboratory genomics

被引:22
作者
Aradhya, Swaroop [1 ,2 ]
Facio, Flavia M. [1 ]
Metz, Hillery [1 ]
Manders, Toby [1 ]
Colavin, Alexandre [1 ]
Kobayashi, Yuya [1 ]
Nykamp, Keith [1 ]
Johnson, Britt [1 ]
Nussbaum, Robert L. [1 ,3 ]
机构
[1] Invitae Corp, San Francisco, CA 94103 USA
[2] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA USA
[3] Univ Calif San Francisco, Volunteer Fac, Sch Med, San Francisco, CA USA
关键词
deep learning; germline genetic testing; in silico prediction algorithms; machine learning; precision medicine; variant classification; ELECTRONIC HEALTH RECORDS; PRECISION MEDICINE; TOOLS; VARIANTS; GENERATION; PREDICTION; PHENOTYPES; DIAGNOSIS; GENETICS; SYSTEM;
D O I
10.1002/ajmg.c.32057
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
引用
收藏
页数:15
相关论文
共 120 条
[11]   An online compendium of treatable genetic disorders [J].
Bick, David ;
Bick, Sarah L. ;
Dimmock, David P. ;
Fowler, Tom A. ;
Caulfield, Mark J. ;
Scott, Richard H. .
AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS, 2021, 187 (01) :48-54
[12]   AVADA: toward automated pathogenic variant evidence retrieval directly from the full-text literature [J].
Birgmeier, Johannes ;
Deisseroth, Cole A. ;
Hayward, Laura E. ;
Galhardo, Luisa M. T. ;
Tierno, Andrew P. ;
Jagadeesh, Karthik A. ;
Stenson, Peter D. ;
Cooper, David N. ;
Bernstein, Jonathan A. ;
Haeussler, Maximilian ;
Bejerano, Gill .
GENETICS IN MEDICINE, 2020, 22 (02) :362-370
[13]   ChromoEnhancer: An Artificial-Intelligence-Based Tool to Enhance Neoplastic Karyograms as an Aid for Effective Analysis [J].
Bokhari, Yahya ;
Alhareeri, Areej ;
Aljouie, Abdulrhman ;
Alkhaldi, Aziza ;
Rashid, Mamoon ;
Alawad, Mohammed ;
Alhassnan, Raghad ;
Samargandy, Saad ;
Panahi, Aliakbar ;
Heidrich, Wolfgang ;
Arodz, Tomasz .
CELLS, 2022, 11 (14)
[14]   Artificial intelligence in early drug discovery enabling precision medicine [J].
Boniolo, Fabio ;
Dorigatti, Emilio ;
Ohnmacht, Alexander J. ;
Saur, Dieter ;
Schubert, Benjamin ;
Menden, Michael P. .
EXPERT OPINION ON DRUG DISCOVERY, 2021, 16 (09) :991-1007
[15]   Seven years since the launch of the Matchmaker Exchange: The evolution of genomic matchmaking [J].
Boycott, Kym M. ;
Azzariti, Danielle R. ;
Hamosh, Ada ;
Rehm, Heidi L. .
HUMAN MUTATION, 2022, 43 (06) :659-667
[16]   Assessing the clinical utility of protein structural analysis in genomic variant classification: experiences from a diagnostic laboratory [J].
Caswell, Richard C. ;
Gunning, Adam C. ;
Owens, Martina M. ;
Ellard, Sian ;
Wright, Caroline F. .
GENOME MEDICINE, 2022, 14 (01)
[17]   Patient Interactions With an Automated Conversational Agent Delivering Pretest Genetics Education: Descriptive Study [J].
Chavez-Yenter, Daniel ;
Kimball, Kadyn E. ;
Kohlmann, Wendy ;
Chambers, Rachelle Lorenz ;
Bradshaw, Richard L. ;
Espinel, Whitney F. ;
Flynn, Michael ;
Gammon, Amanda ;
Goldberg, Eric ;
Hagerty, Kelsi J. ;
Hess, Rachel ;
Kessler, Cecilia ;
Monahan, Rachel ;
Temares, Danielle ;
Tobik, Katie ;
Mann, Devin M. ;
Kawamoto, Kensaku ;
Del Fiol, Guilherme ;
Buys, Saundra S. ;
Ginsburg, Ophira ;
Kaphingst, Kimberly A. .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2021, 23 (11)
[18]  
Chen G, 2023, BRIT J CANCER, V128, P505, DOI 10.1038/s41416-022-02048-2
[19]   Improving variant calling using population data and deep learning [J].
Chen, Nae-Chyun ;
Kolesnikov, Alexey ;
Goel, Sidharth ;
Yun, Taedong ;
Chang, Pi-Chuan ;
Carroll, Andrew .
BMC BIOINFORMATICS, 2023, 24 (01)
[20]   Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation [J].
Clark, Michelle M. ;
Hildreth, Amber ;
Batalov, Sergey ;
Ding, Yan ;
Chowdhury, Shimul ;
Watkins, Kelly ;
Ellsworth, Katarzyna ;
Camp, Brandon ;
Kint, Cyrielle I. ;
Yacoubian, Calum ;
Farnaes, Lauge ;
Bainbridge, Matthew N. ;
Beebe, Curtis ;
Braun, Joshua J. A. ;
Bray, Margaret ;
Carroll, Jeanne ;
Cakici, Julie A. ;
Caylor, Sara A. ;
Clarke, Christina ;
Creed, Mitchell P. ;
Friedman, Jennifer ;
Frith, Alison ;
Gain, Richard ;
Gaughran, Mary ;
George, Shauna ;
Gilmer, Sheldon ;
Gleeson, Joseph ;
Gore, Jeremy ;
Grunenwald, Haiying ;
Hovey, Raymond L. ;
Janes, Marie L. ;
Lin, Kejia ;
McDonagh, Paul D. ;
McBride, Kyle ;
Mulrooney, Patrick ;
Nahas, Shareef ;
Oh, Daeheon ;
Oriol, Albert ;
Puckett, Laura ;
Rady, Zia ;
Reese, Martin G. ;
Ryu, Julie ;
Salz, Lisa ;
Sanford, Erica ;
Stewart, Lawrence ;
Sweeney, Nathaly ;
Tokita, Mari ;
Van der Kraan, Luca ;
White, Sarah ;
Wigby, Kristen .
SCIENCE TRANSLATIONAL MEDICINE, 2019, 11 (489)