Applications of artificial intelligence in clinical laboratory genomics

被引:22
作者
Aradhya, Swaroop [1 ,2 ]
Facio, Flavia M. [1 ]
Metz, Hillery [1 ]
Manders, Toby [1 ]
Colavin, Alexandre [1 ]
Kobayashi, Yuya [1 ]
Nykamp, Keith [1 ]
Johnson, Britt [1 ]
Nussbaum, Robert L. [1 ,3 ]
机构
[1] Invitae Corp, San Francisco, CA 94103 USA
[2] Stanford Univ, Dept Pathol, Sch Med, Stanford, CA USA
[3] Univ Calif San Francisco, Volunteer Fac, Sch Med, San Francisco, CA USA
关键词
deep learning; germline genetic testing; in silico prediction algorithms; machine learning; precision medicine; variant classification; ELECTRONIC HEALTH RECORDS; PRECISION MEDICINE; TOOLS; VARIANTS; GENERATION; PREDICTION; PHENOTYPES; DIAGNOSIS; GENETICS; SYSTEM;
D O I
10.1002/ajmg.c.32057
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The transition from analog to digital technologies in clinical laboratory genomics is ushering in an era of "big data" in ways that will exceed human capacity to rapidly and reproducibly analyze those data using conventional approaches. Accurately evaluating complex molecular data to facilitate timely diagnosis and management of genomic disorders will require supportive artificial intelligence methods. These are already being introduced into clinical laboratory genomics to identify variants in DNA sequencing data, predict the effects of DNA variants on protein structure and function to inform clinical interpretation of pathogenicity, link phenotype ontologies to genetic variants identified through exome or genome sequencing to help clinicians reach diagnostic answers faster, correlate genomic data with tumor staging and treatment approaches, utilize natural language processing to identify critical published medical literature during analysis of genomic data, and use interactive chatbots to identify individuals who qualify for genetic testing or to provide pre-test and post-test education. With careful and ethical development and validation of artificial intelligence for clinical laboratory genomics, these advances are expected to significantly enhance the abilities of geneticists to translate complex data into clearly synthesized information for clinicians to use in managing the care of their patients at scale.
引用
收藏
页数:15
相关论文
共 120 条
[1]   A review of deep learning applications in human genomics using next-generation sequencing data [J].
Alharbi, Wardah S. ;
Rashid, Mamoon .
HUMAN GENOMICS, 2022, 16 (01)
[2]   Knowledge-based approaches to drug discovery for rare diseases [J].
Alves, Vinicius M. ;
Korn, Daniel ;
Pervitsky, Vera ;
Thieme, Andrew ;
Capuzzi, Stephen J. ;
Baker, Nancy ;
Chirkova, Rada ;
Ekins, Sean ;
Muratov, Eugene N. ;
Hickey, Anthony ;
Tropsha, Alexander .
DRUG DISCOVERY TODAY, 2022, 27 (02) :490-502
[3]  
[Anonymous], Artificial intelligence and statistics
[4]  
[Anonymous], DRAGEN SETS NEW STAN
[5]   Is there a way to reduce the inequity in variant interpretation on the basis of ancestry? [J].
Appelbaum, Paul S. ;
Burke, Wylie ;
Parens, Erik ;
Zeevi, David A. ;
Arbour, Laura ;
Garrison, Nanibaa A. ;
Bonham, Vence L. ;
Chung, Wendy K. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (06) :981-988
[6]   A fundamental protein property, thermodynamic stability, revealed solely from large-scale measurements of protein function [J].
Araya, Carlos L. ;
Fowler, Douglas M. ;
Chen, Wentao ;
Muniez, Ike ;
Kelly, Jeffery W. ;
Fields, Stanley .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (42) :16858-16863
[7]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[8]   Comparing Physician and Artificial Intelligence Chatbot Responses to Patient Questions Posted to a Public Social Media Forum [J].
Ayers, John W. ;
Poliak, Adam ;
Dredze, Mark ;
Leas, Eric C. ;
Zhu, Zechariah ;
Kelley, Jessica B. ;
Faix, Dennis J. ;
Goodman, Aaron M. ;
Longhurst, Christopher A. ;
Hogarth, Michael ;
Smith, Davey M. .
JAMA INTERNAL MEDICINE, 2023, 183 (06) :589-596
[9]   Guiding principles for the responsible development of artificial intelligence tools for healthcare [J].
Badal, Kimberly ;
Lee, Carmen M. ;
Esserman, Laura J. .
COMMUNICATIONS MEDICINE, 2023, 3 (01)
[10]   A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study [J].
Barnes, Josue ;
Brendel, Matthew ;
Gao, Vianne R. ;
Rajendran, Suraj ;
Kim, Junbum ;
Li, Qianzi ;
Malmsten, Jonas E. ;
Sierra, Jose ;
Zisimopoulos, Pantelis ;
Sigaras, Alexandros ;
Khosravi, Pegah ;
Meseguer, Marcos ;
Zhan, Qiansheng ;
Rosenwaks, Zev ;
Elemento, Olivier ;
Zaninovic, Nikica ;
Hajirasouliha, Iman .
LANCET DIGITAL HEALTH, 2023, 5 (01) :E28-E40