Branched-chain keto acids inhibit mitochondrial pyruvate carrier and suppress gluconeogenesis in hepatocytes

被引:16
作者
Nishi, Kiyoto [1 ,3 ]
Yoshii, Akira [1 ]
Abell, Lauren [1 ]
Zhou, Bo [1 ]
Frausto, Ricardo [4 ]
Ritterhoff, Julia [1 ]
McMillen, Timothy S. [1 ]
Sweet, Ian [2 ]
Wang, Yibin [4 ,5 ]
Gao, Chen [4 ,6 ]
Tian, Rong [1 ]
机构
[1] Univ Washington, Mitochondria & Metab Ctr, Dept Anesthesiol & Pain Med, 850 Republican St, Seattle, WA 98109 USA
[2] Univ Washington, Med Diabet Inst, 750 Republican St, Seattle, WA 98109 USA
[3] Shiga Univ Med Sci, Dept Pharmacol, Otsu, Shiga 5202182, Japan
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Cardiovasc Res Labs, Los Angeles, CA 90095 USA
[5] Duke NUS Sch Med, Signature Program Cardiovasc & Metab Dis, Singapore, Singapore
[6] Univ Cincinnati, Coll Med, Dept Pharmacol & Syst Physiol, Cincinnati, OH 45267 USA
来源
CELL REPORTS | 2023年 / 42卷 / 06期
基金
美国国家卫生研究院;
关键词
AMINO-ACIDS; INSULIN-RESISTANCE; GLUCOSE-METABOLISM; CATABOLISM; TRANSPORT; HEART;
D O I
10.1016/j.celrep.2023.112641
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accu-mulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacolog-ical activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.
引用
收藏
页数:18
相关论文
共 50 条
[1]   The Role of Branched-Chain Amino Acids and Branched-Chain α-Keto Acid Dehydrogenase Kinase in Metabolic Disorders [J].
Du, Chuang ;
Liu, Wen-Jie ;
Yang, Jing ;
Zhao, Shan-Shan ;
Liu, Hui-Xin .
FRONTIERS IN NUTRITION, 2022, 9
[2]   The Critical Role of the Branched Chain Amino Acids (BCAAs) Catabolism-Regulating Enzymes, Branched-Chain Aminotransferase (BCAT) and Branched-Chain α-Keto Acid Dehydrogenase (BCKD), in Human Pathophysiology [J].
Dimou, Aikaterini ;
Tsimihodimos, Vasilis ;
Bairaktari, Eleni .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (07)
[3]   Branched-chain amino acids [J].
Platell, C ;
Kong, SE ;
McCauley, R ;
Hall, JC .
JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2000, 15 (07) :706-717
[4]   Branched-chain amino acids as biomarkers in diabetes [J].
Giesbertz, Pieter ;
Daniel, Hannelore .
CURRENT OPINION IN CLINICAL NUTRITION AND METABOLIC CARE, 2016, 19 (01) :48-54
[5]   Quantification of branched-chain keto acids in tissue by ultra fast liquid chromatography-mass spectrometry [J].
Olson, Kristine C. ;
Chen, Gang ;
Lynch, Christopher J. .
ANALYTICAL BIOCHEMISTRY, 2013, 439 (02) :116-122
[6]   Branched-chain α-keto acids and glutamate/glutamine: Biomarkers of insulin resistance in childhood obesity [J].
Gumus Balikcioglu, Pinar ;
Trub, Catherine Jachthuber ;
Balikcioglu, Metin ;
Ilkayeva, Olga ;
White, Phillip J. ;
Muehlbauer, Michael ;
Bain, James R. R. ;
Armstrong, Sarah ;
Freemark, Michael .
ENDOCRINOLOGY DIABETES & METABOLISM, 2023, 6 (01)
[7]   Elevated branched-chain α-keto acids exacerbate macrophage oxidative stress and chronic inflammatory damage in type 2 diabetes mellitus [J].
Liu, Shuyun ;
Li, Ling ;
Lou, Peng ;
Zhao, Meng ;
Wang, Yizhuo ;
Tang, Minghai ;
Gong, Meng ;
Liao, Guangneng ;
Yuan, Yujia ;
Li, Lan ;
Zhang, Jie ;
Chen, Younan ;
Cheng, Jingqiu ;
Lu, Yanrong ;
Liu, Jingping .
FREE RADICAL BIOLOGY AND MEDICINE, 2021, 175 :141-154
[8]   Altered branched-chain α-keto acid metabolism is a feature of NAFLD in individuals with severe obesity [J].
Grenier-Larouche, Thomas ;
Kwee, Lydia Coulter ;
Deleye, Yann ;
Leon-Mimila, Paola ;
Walejko, Jacquelyn M. ;
McGarrah, Robert W. ;
Marceau, Simon ;
Trahan, Sylvain ;
Racine, Christine ;
Carpentier, Andre C. ;
Lusis, Aldons J. ;
Ilkayeva, Olga ;
Vohl, Marie-Claude ;
Huertas-Vazquez, Adriana ;
Tchernof, Andre ;
Shah, Svati H. ;
Newgard, Christopher B. ;
White, Phillip J. .
JCI INSIGHT, 2022, 7 (15)
[9]   Excess Branched-Chain Amino Acids Suppress Mitochondrial Function and Biogenic Signaling but Not Mitochondrial Dynamics in a Myotube Model of Skeletal Muscle Insulin Resistance [J].
Vanderstad, Lindsey R. ;
Wyatt, Emily C. ;
Vaughan, Roger A. .
METABOLITES, 2024, 14 (07)
[10]   Tissue-specific characterization of mitochondrial branched-chain keto acid oxidation using a multiplexed assay platform [J].
Goldberg, Emma J. ;
Buddo, Katherine A. ;
McLaughlin, Kelsey L. ;
Fernandez, Regina F. ;
Pereyra, Andrea S. ;
Psaltis, Christine E. ;
Lin, Chien-Te ;
Hagen, James T. ;
Boykov, Ilya N. ;
Nguyen, Tiffany K. ;
Gowdy, Kymberly M. ;
Ellis, Jessica M. ;
Neufer, P. Darrell ;
McClung, Joseph M. ;
Fisher-Wellman, Kelsey H. .
BIOCHEMICAL JOURNAL, 2019, 476 :1521-1537