Branched-chain keto acids inhibit mitochondrial pyruvate carrier and suppress gluconeogenesis in hepatocytes

被引:24
作者
Nishi, Kiyoto [1 ,3 ]
Yoshii, Akira [1 ]
Abell, Lauren [1 ]
Zhou, Bo [1 ]
Frausto, Ricardo [4 ]
Ritterhoff, Julia [1 ]
McMillen, Timothy S. [1 ]
Sweet, Ian [2 ]
Wang, Yibin [4 ,5 ]
Gao, Chen [4 ,6 ]
Tian, Rong [1 ]
机构
[1] Univ Washington, Mitochondria & Metab Ctr, Dept Anesthesiol & Pain Med, 850 Republican St, Seattle, WA 98109 USA
[2] Univ Washington, Med Diabet Inst, 750 Republican St, Seattle, WA 98109 USA
[3] Shiga Univ Med Sci, Dept Pharmacol, Otsu, Shiga 5202182, Japan
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Anesthesiol, Cardiovasc Res Labs, Los Angeles, CA 90095 USA
[5] Duke NUS Sch Med, Signature Program Cardiovasc & Metab Dis, Singapore, Singapore
[6] Univ Cincinnati, Coll Med, Dept Pharmacol & Syst Physiol, Cincinnati, OH 45267 USA
基金
美国国家卫生研究院;
关键词
AMINO-ACIDS; INSULIN-RESISTANCE; GLUCOSE-METABOLISM; CATABOLISM; TRANSPORT; HEART;
D O I
10.1016/j.celrep.2023.112641
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accu-mulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacolog-ical activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.
引用
收藏
页数:18
相关论文
共 53 条
[1]   Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes [J].
Axelsson, Annika S. ;
Tubbs, Emily ;
Mecham, Brig ;
Chacko, Shaji ;
Nenonen, Hannah A. ;
Tang, Yunzhao ;
Fahey, Jed W. ;
Derry, Jonathan M. J. ;
Wollheim, Claes B. ;
Wierup, Nils ;
Haymond, Morey W. ;
Friend, Stephen H. ;
Mulder, Hindrik ;
Rosengren, Anders H. .
SCIENCE TRANSLATIONAL MEDICINE, 2017, 9 (394)
[2]   TOTAL CELL PROTEIN-CONCENTRATION AS AN EVOLUTIONARY CONSTRAINT ON THE METABOLIC CONTROL DISTRIBUTION IN CELLS [J].
BROWN, GC .
JOURNAL OF THEORETICAL BIOLOGY, 1991, 153 (02) :195-203
[3]   The metabolite α-ketoglutarate extends lifespan by inhibiting ATP synthase and TOR [J].
Chin, Randall M. ;
Fu, Xudong ;
Pai, Melody Y. ;
Vergnes, Laurent ;
Hwang, Heejun ;
Deng, Gang ;
Diep, Simon ;
Lomenick, Brett ;
Meli, Vijaykumar S. ;
Monsalve, Gabriela C. ;
Hu, Eileen ;
Whelan, Stephen A. ;
Wang, Jennifer X. ;
Jung, Gwanghyun ;
Solis, Gregory M. ;
Fazlollahi, Farbod ;
Kaweeteerawat, Chitrada ;
Quach, Austin ;
Nili, Mahta ;
Krall, Abby S. ;
Godwin, Hilary A. ;
Chang, Helena R. ;
Faull, Kym F. ;
Guo, Feng ;
Jiang, Meisheng ;
Trauger, Sunia A. ;
Saghatelian, Alan ;
Braas, Daniel ;
Christofk, Heather R. ;
Clarke, Catherine F. ;
Teitell, Michael A. ;
Petrascheck, Michael ;
Reue, Karen ;
Jung, Michael E. ;
Frand, Alison R. ;
Huang, Jing .
NATURE, 2014, 510 (7505) :397-401
[4]   Lessons from genetic disorders of branched-chain amino acid metabolism [J].
Chuang, DT ;
Chuang, JL ;
Wynn, RM .
JOURNAL OF NUTRITION, 2006, 136 (01) :243S-249S
[5]   20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport [J].
Cunningham, Corey N. ;
Rutter, Jared .
EMBO REPORTS, 2020, 21 (05)
[6]   Towards detecting regulatory protein-metabolite interactions [J].
Diether, Maren ;
Sauer, Uwe .
CURRENT OPINION IN MICROBIOLOGY, 2017, 39 :16-23
[7]   Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina [J].
Du, Jianhai ;
Cleghorn, Whitney M. ;
Contreras, Laura ;
Lindsay, Ken ;
Rountree, Austin M. ;
Chertov, Andrei O. ;
Turner, Sally J. ;
Sahaboglu, Ayse ;
Linton, Jonathan ;
Sadilek, Martin ;
Satrustegui, Jorgina ;
Sweet, Ian R. ;
Paquet-Durand, Franois ;
Hurley, James B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (50) :36129-36140
[8]   Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health [J].
Fontana, Luigi ;
Cummings, Nicole E. ;
Apelo, Sebastian I. Arriola ;
Neuman, Joshua C. ;
Kasza, Ildiko ;
Schmidt, Brian A. ;
Cava, Edda ;
Spelta, Francesco ;
Tosti, Valeria ;
Syed, Faizan A. ;
Baar, Emma L. ;
Veronese, Nicola ;
Cottrell, Sara E. ;
Fenske, Rachel J. ;
Bertozzi, Beatrice ;
Brar, Harpreet K. ;
Pietka, Terri ;
Bullock, Arnold D. ;
Figenshau, Robert S. ;
Andriole, Gerald L. ;
Merrins, Matthew J. ;
Alexander, Caroline M. ;
Kimple, Michelle E. ;
Lamming, Dudley W. .
CELL REPORTS, 2016, 16 (02) :520-530
[9]   A Method for Multiplexed Measurement of Mitochondrial Pyruvate Carrier Activity [J].
Gray, Lawrence R. ;
Rauckhorst, Adam J. ;
Taylor, Eric B. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (14) :7409-7417
[10]   Hepatic Mitochondrial Pyruvate Carrier 1 Is Required for Efficient Regulation of Gluconeogenesis and Whole-Body Glucose Homeostasis [J].
Gray, Lawrence R. ;
Sultana, Mst Rasheda ;
Rauckhorst, Adam J. ;
Oonthonpan, Lalita ;
Tompkins, Sean C. ;
Sharma, Arpit ;
Fu, Xiaorong ;
Miao, Ren ;
Pewa, Alvin D. ;
Brown, Kathryn S. ;
Lane, Erin E. ;
Dohlman, Ashley ;
Zepeda-Orozco, Diana ;
Xie, Jianxin ;
Rutter, Jared ;
Norris, Andrew W. ;
Cox, James E. ;
Burgess, Shawn C. ;
Potthoff, Matthew J. ;
Taylor, Eric B. .
CELL METABOLISM, 2015, 22 (04) :669-681