Low-latency, photon-efficient wavefront sensing for ultrafast adaptive optics imaging of the human retina

被引:1
作者
Liu, Yan [1 ]
Crowell, James A. [1 ]
Kurokawa, Kazuhiro [1 ]
Bernucci, Marcel T. [1 ]
Ji, Qiuzhi [1 ]
Lassoued, Ayoub [1 ]
Jung, Hae Won [1 ]
Miller, Donald T. [1 ]
机构
[1] Indiana Univ, Sch Optometry, Bloomington, IN 47405 USA
来源
OPHTHALMIC TECHNOLOGIES XXXIII | 2023年 / 12360卷
关键词
Adaptive optics; Wavefront sensing; Retinal imaging; Optical coherence tomography; Nystagmus; COHERENCE TOMOGRAPHY; ABERRATIONS; DYNAMICS; QUALITY;
D O I
10.1117/12.2650674
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Adaptive optics (AO) measures and corrects ocular wavefront aberrations, enabling cellular-resolution retinal imaging and stimulation, and enhanced visual performance. AO is a dynamic control system that must track and correct temporal changes in ocular aberrations in real time. This necessitates a wavefront sensor whose integration time and readout time are sufficiently short to minimize the latency of the feedback system and hence maximize AO performance. Most current ophthalmic AO systems use long wavefront sensor integration times on the order of 10-60 ms, resulting in long latencies, low AO loop rates (typically no greater than 10 Hz with a discontinuous-exposure scheme), and small AO closed-loop bandwidths (less than 1.5 Hz). Here, by using an integration time (0.126 ms) that is 100-500xshorter and a readout speed of the wavefront sensor that is 3-100xhigher, we reduce the AO latency and increase the AO bandwidth by similar to 30xto 37.5 Hz. Although our wavefront sensor detects 100-500x fewer photons, our noise analysis shows that this limited number of photons is still sufficient for diffraction-limited wavefront measurements and hence our wavefront sensing is photon-efficient. We demonstrate that the resulting ultrafast AO running at 233 Hz significantly improves aberration correction and retinal image quality over conventional AO in a clinically-relevant scenario.
引用
收藏
页数:8
相关论文
共 35 条
[1]   Accounting for focal shift in the Shack-Hartmann wavefront sensor [J].
Akondi, Vyas ;
Dubra, Alfredo .
OPTICS LETTERS, 2019, 44 (17) :4151-4154
[2]   Use of focus measure operators for characterization of flood illumination adaptive optics ophthalmoscopy image quality [J].
Alonso-Caneiro, David ;
Sampson, Danuta M. ;
Chew, Avenell L. ;
Collins, Michael J. ;
Chen, Fred K. .
BIOMEDICAL OPTICS EXPRESS, 2018, 9 (02) :679-693
[3]  
[Anonymous], 1999, Adaptive Optics in Astronomy
[4]   Wind-driven halo in high-contrast images: I. Analysis of the focal-plane images of SPHERE [J].
Cantalloube, F. ;
Farley, O. J. D. ;
Milli, J. ;
Bharmal, N. ;
Brandner, W. ;
Correia, C. ;
Dohlen, K. ;
Henning, Th. ;
Osborn, J. ;
Por, E. ;
Valles, M. Suarez ;
Vigan, A. .
ASTRONOMY & ASTROPHYSICS, 2020, 638
[5]  
Correia C, 2018, SPIE ASTRONOMICAL TE, V10703
[6]   Study of the tear topography dynamics using a lateral shearing interferometer [J].
Dubra, A ;
Paterson, C ;
Dainty, C .
OPTICS EXPRESS, 2004, 12 (25) :6278-6288
[7]   Reflective afocal broadband adaptive optics scanning ophthalmoscope [J].
Dubra, Alfredo ;
Sulai, Yusufu .
BIOMEDICAL OPTICS EXPRESS, 2011, 2 (06) :1757-1768
[8]   Error Budget Analysis for an Adaptive Optics Optical Coherence Tomography System [J].
Evans, Julia W. ;
Zawadzki, Robert J. ;
Jones, Steven M. ;
Olivier, Scot S. ;
Werner, John S. .
OPTICS EXPRESS, 2009, 17 (16) :13768-13784
[9]   High loop rate adaptive optics flood illumination ophthalmoscope with structured illumination capability [J].
Gofas-Salas, Elena ;
Mece, Pedro ;
Petit, Cyril ;
Jarosz, Jessica ;
Mugnier, Laurent M. ;
Bonnefois, Aurelie Montmerle ;
Grieve, Kate ;
Sahel, Jose ;
Paques, Michel ;
Meimon, Serge .
APPLIED OPTICS, 2018, 57 (20) :5635-5642
[10]   Study of the dynamic aberrations of the human tear film [J].
Gruppetta, S ;
Lacombe, F ;
Puget, P .
OPTICS EXPRESS, 2005, 13 (19) :7631-7636