Particle configurations for branching Brownian motion with an inhomogeneous branching rate

被引:2
作者
Liu, Jiaqi [1 ]
Schweinsberg, Jason [2 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
来源
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS | 2023年 / 20卷
关键词
branching Brownian motion; particle configurations; natural selection; TRAVELING-WAVES; ADAPTATION; EVOLUTION; FLUCTUATIONS; POPULATION; SELECTION; SPEED;
D O I
10.30757/ALEA.v20-28
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Aiming to understand the distribution of fitness levels of individuals in a large population undergoing selection, we study the particle configurations of branching Brownian motion where each particle independently moves as Brownian motion with negative drift, particles can die or undergo dyadic fission, and the difference between the birth rate and the death rate is proportional to the particle's location. Under some assumptions, we obtain the limit in probability of the number of particles in any given interval and an explicit formula for the asymptotic empirical density of the fitness distribution. We show that after a sufficiently long time, the fitness distribution from the lowest to the highest fitness levels approximately evolves as a traveling wave with a profile which is asymptotically related to the Airy function. Our work complements the results in Roberts and Schweinsberg (2021), giving a fuller picture of the fitness distribution.
引用
收藏
页码:731 / 803
页数:73
相关论文
共 34 条
[1]   Genetic progression and the waiting time to cancer [J].
Beerenwinkel, Niko ;
Antal, Tibor ;
Dingli, David ;
Traulsen, Arne ;
Kinzler, Kenneth W. ;
Velculescu, Victor E. ;
Vogelstein, Bert ;
Nowak, Martin A. .
PLOS COMPUTATIONAL BIOLOGY, 2007, 3 (11) :2239-2246
[2]   Critical branching Brownian motion with absorption: Particle configurations [J].
Berestycki, Julien ;
Berestycki, Nathanael ;
Schweinsberg, Jason .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (04) :1215-1250
[3]   Growth rates of the population in a branching Brownian motion with an inhomogeneous breeding potential [J].
Berestycki, Julien ;
Brunet, Eric ;
Harris, John W. ;
Harris, Simon C. ;
Roberts, Matthew I. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (05) :2096-2145
[4]   THE GENEALOGY OF BRANCHING BROWNIAN MOTION WITH ABSORPTION [J].
Berestycki, Julien ;
Berestycki, Nathanael ;
Schweinsberg, Jason .
ANNALS OF PROBABILITY, 2013, 41 (02) :527-618
[5]   Effect of selection on ancestry:: An exactly soluble case and its phenomenological generalization [J].
Brunet, E. ;
Derrida, B. ;
Mueller, A. H. ;
Munier, S. .
PHYSICAL REVIEW E, 2007, 76 (04)
[6]   Noisy traveling waves: Effect of selection on genealogies [J].
Brunet, E. ;
Derrida, B. ;
Mueller, A. H. ;
Munier, S. .
EUROPHYSICS LETTERS, 2006, 76 (01) :1-7
[7]   Front propagation up a reaction rate gradient [J].
Cohen, E ;
Kessler, DA ;
Levine, H .
PHYSICAL REVIEW E, 2005, 72 (06)
[8]   Beneficial mutation-selection balance and the effect of linkage on positive selection [J].
Desai, Michael M. ;
Fisher, Daniel S. .
GENETICS, 2007, 176 (03) :1759-1798
[9]  
DLMF, NIST DIGITAL LIB MAT
[10]   TRAVELING WAVES OF SELECTIVE SWEEPS [J].
Durrett, Rick ;
Mayberry, John .
ANNALS OF APPLIED PROBABILITY, 2011, 21 (02) :699-744