An artificial intelligence classifier for electron beam powder bed fusion as-built surface topographies

被引:4
作者
Maculotti, Giacomo [1 ]
Ghibaudo, Cristian [2 ]
Genta, Gianfranco [1 ]
Ugues, Daniele [2 ]
Galetto, Maurizio [1 ]
机构
[1] Politecn Torino, Dept Management & Prod Engn, Cso Duca Abruzzi 24, I-10129 Turin, Italy
[2] Politecn Torino, Dept Appl Sci & Technol, Cso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Surface topography; Machine learning; Feature characterisation; Classification; Electron beam melting; Quality control; MECHANICAL-PROPERTIES; PARAMETERS; METAL; EBM; MICROSTRUCTURE; COMPONENTS; ROUGHNESS; INSERTS; SYSTEM;
D O I
10.1016/j.cirpj.2023.03.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive Manufacturing, a pillar of Industry 4.0, to enable automatic real-time process control, relies on in -situ measurements, some of which -currently under development -exploit surface topography. Topographic characterisation requires a large set of parameters, loosely linked to visual appearance upon which related in-situ measurements are mostly based. A supervised machine learning classifier of as-built surfaces based on topographical characterisation is proposed and applied to tool steel test pieces fabricated by electron beam powder bed fusion. The methodology is developed to provide process engineers with the visual appearance of the topographical parameters set, and enable multi-scale, information-rich quality control.(c) 2023 CIRP.
引用
收藏
页码:129 / 142
页数:14
相关论文
共 104 条
[31]   Crystallographic texture evolution in electron beam melting additive manufacturing of pure Molybdenum [J].
Fernandez-Zelaia, Patxi ;
Ledford, Christopher ;
Ellis, Elizabeth A., I ;
Campbell, Quinn ;
Rossy, Andres Marquez ;
Leonard, Donovan N. ;
Kirka, Michael M. .
MATERIALS & DESIGN, 2021, 207
[32]   Tracking and controlling the morphology evolution of 3D powder-bed fusion in situ using inline coherent imaging [J].
Fleming, Tristan G. ;
Nestor, Stephen G. L. ;
Allen, Troy R. ;
Boukhaled, Mark A. ;
Smith, Nathan J. ;
Fraser, James M. .
ADDITIVE MANUFACTURING, 2020, 32
[33]  
Galati M., 2021, Proc. CIRP, V99, P336, DOI [10.1016/j.procir.2021.03, DOI 10.1016/J.PROCIR.2021.03.049]
[34]   Surface Roughness Characterisation and Analysis of the Electron Beam Melting (EBM) Process [J].
Galati, Manuela ;
Minetola, Paolo ;
Rizza, Giovanni .
MATERIALS, 2019, 12 (13)
[35]   Defect Probability Estimation for Hardness-Optimised Parts by Selective Laser Melting [J].
Galetto, Maurizio ;
Genta, Gianfranco ;
Maculotti, Giacomo ;
Verna, Elisa .
INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2020, 21 (09) :1739-1753
[36]  
Gelbart MA, 2014, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P250
[37]  
Ghibaudo C., 2021, FATIGUE FRACT ENG M
[38]   Information-rich quality controls prediction model based on non-destructive analysis for porosity determination of AISI H13 produced by electron beam melting [J].
Ghibaudo, Cristian ;
Maculotti, Giacomo ;
Gobber, Federico ;
Saboori, Abdollah ;
Galetto, Maurizio ;
Biamino, Sara ;
Ugues, Daniele .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (3-4) :1159-1173
[39]   Direct tool steel injection mould inserts through the Arcam EBM free-form fabrication process [J].
Gibbons, GJ ;
Hansell, RG .
ASSEMBLY AUTOMATION, 2005, 25 (04) :300-305
[40]   Optimization of surface measurement for metal additive manufacturing using coherence scanning interferometry [J].
Gomez, Carlos ;
Su, Rong ;
Thompson, Adam ;
DiSciacca, Jack ;
Lawes, Simon ;
Leach, Richard .
OPTICAL ENGINEERING, 2017, 56 (11)