ON THE STABILITY AND ASYMPTOTIC BEHAVIOR FOR A QUASI-LINEAR PARABOLIC FLOW

被引:0
作者
Ma, L., I [1 ]
Shi, Z. I. Z. H. E. N. [1 ]
机构
[1] Univ Sci & Technol Beijing, Sch Math & Phys, Xueyuan Rd 30, Beijing, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年 / 17卷 / 02期
基金
中国国家自然科学基金;
关键词
Quasi-linear parabolic; global solutions; asymptotic behavior; stability; convergence; FREE-BOUNDARY PROBLEM; CURVATURE FLOW; STATIONARY LINES;
D O I
10.3934/dcdss.2023053
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the stability property and asymptotic be-havior for a quasi-linear parabolic flow in the whole line. We first show the existence and uniqueness of global solutions of the problem. Then we study the stability of the solution to the straight line. We prove the asymptotic behavior or the convergence of the global solution. Similar to the behavior of solutions to heat equation, we prove that the stationary line attracts the graphical curves which surround it.
引用
收藏
页码:620 / 633
页数:14
相关论文
共 21 条
[1]   TRANSLATING SURFACES OF THE NONPARAMETRIC MEAN-CURVATURE FLOW WITH PRESCRIBED CONTACT-ANGLE [J].
ALTSCHULER, SJ ;
WU, LF .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1994, 2 (01) :101-111
[2]   CONVERGENCE TO TRANSLATING SOLUTIONS FOR A CLASS OF QUASI-LINEAR PARABOLIC BOUNDARY-PROBLEMS [J].
ALTSCHULER, SJ ;
WU, LF .
MATHEMATISCHE ANNALEN, 1993, 295 (04) :761-765
[3]  
Brakke Kenneth A., 1978, MATH NOTES, V20
[4]  
Chang YL, 2003, ASYMPTOTIC ANAL, V34, P333
[5]   Motion by curvature of planar curves with end points moving freely on a line [J].
Chen, Xinfu ;
Guo, Jong-Shenq .
MATHEMATISCHE ANNALEN, 2011, 350 (02) :277-311
[6]  
Chen Y.-G., 1999, FUNDAMENTAL CONTRIBU, P375
[7]   Convergence and sharp thresholds for propagation in nonlinear diffusion problems [J].
Du, Yihong ;
Matano, Hiroshi .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2010, 12 (02) :279-312
[8]  
Ecker K., 2004, Progress in Nonlinear Differential Equations and Their Applications, V57
[9]   PHASE-TRANSITIONS AND GENERALIZED MOTION BY MEAN-CURVATURE [J].
EVANS, LC ;
SONER, HM ;
SOUGANIDIS, PE .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1992, 45 (09) :1097-1123
[10]   Self-similar expanding solutions in a sector for a crystalline flow [J].
Giga, MH ;
Giga, Y ;
Hontani, H .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1207-1226