EBHI: A new Enteroscope Biopsy Histopathological H&E Image Dataset for image classification evaluation

被引:20
作者
Hu, Weiming [1 ]
Li, Chen [1 ]
Rahaman, Md Mamunur [1 ,3 ]
Chen, Haoyuan [1 ]
Liu, Wanli [1 ]
Yao, Yudong [4 ]
Sun, Hongzan [5 ]
Grzegorzek, Marcin [6 ,7 ]
Li, Xiaoyan [2 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Microscop Image & Med Image Anal Grp, Shenyang, Peoples R China
[2] China Med Univ, Canc Hosp, Liaoning Canc Hosp & Inst, Shenyang, Peoples R China
[3] Univ New South Wales, Sch Comp Sci & Engn, Sydney, Australia
[4] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ USA
[5] China Med Univ, Shengjing Hosp, Dept Radiol, Shenyang, Peoples R China
[6] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[7] Univ Econ Katowice, Dept Knowledge Engn, Katowice, Poland
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2023年 / 107卷
基金
中国国家自然科学基金;
关键词
Enteroscope biopsy; Colorectal histopathology; Image database; Image classification; ARTIFICIAL-INTELLIGENCE; CANCER; SEGMENTATION; DIAGNOSIS; PATHOLOGY;
D O I
10.1016/j.ejmp.2023.102534
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purpose: Colorectal cancer has become the third most common cancer worldwide, ac-counting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness.Methods: A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200x.Results: Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%.Conclusion: To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.
引用
收藏
页数:9
相关论文
共 55 条
[41]  
Riasatian A, 2021, ARXIV
[42]   Current challenges of implementing artificial intelligence in medical imaging [J].
Saw, Shier Nee ;
Ng, Kwan Hoong .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2022, 100 :12-17
[43]  
Simonyan K, 2015, Arxiv, DOI [arXiv:1409.1556, DOI 10.48550/ARXIV.1409.1556]
[44]   MetaMed: Few-shot medical image classification using gradient-based meta-learning [J].
Singh, Rishav ;
Bharti, Vandana ;
Purohit, Vishal ;
Kumar, Abhinav ;
Singh, Amit Kumar ;
Singh, Sanjay Kumar .
PATTERN RECOGNITION, 2021, 120
[45]   Gland segmentation in colon histology images: The glas challenge contest [J].
Sirinukunwattana, Korsuk ;
Pluim, Josien P. W. ;
Chen, Hao ;
Qi, Xiaojuan ;
Heng, Pheng-Ann ;
Guo, Yun Bo ;
Wang, Li Yang ;
Matuszewski, Bogdan J. ;
Bruni, Elia ;
Sanchez, Urko ;
Bohm, Anton ;
Ronneberger, Olaf ;
Cheikh, Bassem Ben ;
Racoceanu, Daniel ;
Kainz, Philipp ;
Pfeiffer, Michael ;
Urschler, Martin ;
Snead, David R. J. ;
Rajpoot, Nasir M. .
MEDICAL IMAGE ANALYSIS, 2017, 35 :489-502
[46]   Gastric histopathology image segmentation using a hierarchical conditional random field [J].
Sun, Changhao ;
Li, Chen ;
Zhang, Jinghua ;
Rahaman, Md Mamunur ;
Ai, Shiliang ;
Chen, Hao ;
Kulwa, Frank ;
Li, Yixin ;
Li, Xiaoyan ;
Jiang, Tao .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (04) :1535-1555
[47]   Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries [J].
Sung, Hyuna ;
Ferlay, Jacques ;
Siegel, Rebecca L. ;
Laversanne, Mathieu ;
Soerjomataram, Isabelle ;
Jemal, Ahmedin ;
Bray, Freddie .
CA-A CANCER JOURNAL FOR CLINICIANS, 2021, 71 (03) :209-249
[48]   Rethinking the Inception Architecture for Computer Vision [J].
Szegedy, Christian ;
Vanhoucke, Vincent ;
Ioffe, Sergey ;
Shlens, Jon ;
Wojna, Zbigniew .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :2818-2826
[49]   A neural pathomics framework for classifying colorectal cancer histopathology images based on wavelet multi-scale texture analysis [J].
Trivizakis, Eleftherios ;
Ioannidis, Georgios S. ;
Souglakos, Ioannis ;
Karantanas, Apostolos H. ;
Tzardi, Maria ;
Marias, Kostas .
SCIENTIFIC REPORTS, 2021, 11 (01)
[50]   A support vector machine-based ensemble algorithm for breast cancer diagnosis [J].
Wang, Haifeng ;
Zheng, Bichen ;
Yoon, Sang Won ;
Ko, Hoo Sang .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 267 (02) :687-699