EBHI: A new Enteroscope Biopsy Histopathological H&E Image Dataset for image classification evaluation

被引:20
作者
Hu, Weiming [1 ]
Li, Chen [1 ]
Rahaman, Md Mamunur [1 ,3 ]
Chen, Haoyuan [1 ]
Liu, Wanli [1 ]
Yao, Yudong [4 ]
Sun, Hongzan [5 ]
Grzegorzek, Marcin [6 ,7 ]
Li, Xiaoyan [2 ]
机构
[1] Northeastern Univ, Coll Med & Biol Informat Engn, Microscop Image & Med Image Anal Grp, Shenyang, Peoples R China
[2] China Med Univ, Canc Hosp, Liaoning Canc Hosp & Inst, Shenyang, Peoples R China
[3] Univ New South Wales, Sch Comp Sci & Engn, Sydney, Australia
[4] Stevens Inst Technol, Dept Elect & Comp Engn, Hoboken, NJ USA
[5] China Med Univ, Shengjing Hosp, Dept Radiol, Shenyang, Peoples R China
[6] Univ Lubeck, Inst Med Informat, Lubeck, Germany
[7] Univ Econ Katowice, Dept Knowledge Engn, Katowice, Poland
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2023年 / 107卷
基金
中国国家自然科学基金;
关键词
Enteroscope biopsy; Colorectal histopathology; Image database; Image classification; ARTIFICIAL-INTELLIGENCE; CANCER; SEGMENTATION; DIAGNOSIS; PATHOLOGY;
D O I
10.1016/j.ejmp.2023.102534
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purpose: Colorectal cancer has become the third most common cancer worldwide, ac-counting for approximately 10% of cancer patients. Early detection of the disease is important for the treatment of colorectal cancer patients. Histopathological examination is the gold standard for screening colorectal cancer. However, the current lack of histopathological image datasets of colorectal cancer, especially enteroscope biopsies, hinders the accurate evaluation of computer-aided diagnosis techniques. Therefore, a multi-category colorectal cancer dataset is needed to test various medical image classification methods to find high classification accuracy and strong robustness.Methods: A new publicly available Enteroscope Biopsy Histopathological H&E Image Dataset (EBHI) is published in this paper. To demonstrate the effectiveness of the EBHI dataset, we have utilized several machine learning, convolutional neural networks and novel transformer-based classifiers for experimentation and evaluation, using an image with a magnification of 200x.Results: Experimental results show that the deep learning method performs well on the EBHI dataset. Classical machine learning methods achieve maximum accuracy of 76.02% and deep learning method achieves a maximum accuracy of 95.37%.Conclusion: To the best of our knowledge, EBHI is the first publicly available colorectal histopathology enteroscope biopsy dataset with four magnifications and five types of images of tumor differentiation stages, totaling 5532 images. We believe that EBHI could attract researchers to explore new classification algorithms for the automated diagnosis of colorectal cancer, which could help physicians and patients in clinical settings.
引用
收藏
页数:9
相关论文
共 55 条
[1]  
[Anonymous], 2020, PROCEDIA COMPUT SCI, DOI DOI 10.1016/j.procs.2020.03.382
[2]  
Bilal Mohsin, 2022, medRxiv, P1
[3]   AI applications to medical images: From machine learning to deep learning [J].
Castiglioni, Isabella ;
Rundo, Leonardo ;
Codari, Marina ;
Leo, Giovanni Di ;
Salvatore, Christian ;
Interlenghi, Matteo ;
Gallivanone, Francesca ;
Cozzi, Andrea ;
D'Amico, Natascha Claudia ;
Sardanelli, Francesco .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :9-24
[4]   The Wonderful Colors of the Hematoxylin-Eosin Stain in Diagnostic Surgical Pathology [J].
Chan, John K. C. .
INTERNATIONAL JOURNAL OF SURGICAL PATHOLOGY, 2014, 22 (01) :12-32
[5]   SVIA dataset: A new dataset of microscopic videos and images for computer-aided sperm analysis [J].
Chen, Ao ;
Li, Chen ;
Zou, Shuojia ;
Rahaman, Md Mamunur ;
Yao, Yudong ;
Chen, Haoyuan ;
Yang, Hechen ;
Zhao, Peng ;
Hu, Weiming ;
Liu, Wanli ;
Grzegorzek, Marcin .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) :204-214
[6]  
Chen HY, 2022, Arxiv, DOI arXiv:2104.14528
[7]   IL-MCAM: An interactive learning and multi-channel attention mechanism-based weakly supervised colorectal histopathology image classification approach [J].
Chen, Haoyuan ;
Li, Chen ;
Li, Xiaoyan ;
Rahaman, Md Mamunur ;
Hu, Weiming ;
Li, Yixin ;
Liu, Wanli ;
Sun, Changhao ;
Sun, Hongzan ;
Huang, Xinyu ;
Grzegorzek, Marcin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 143
[8]   Pathology of the malignant colorectal polyp [J].
Cooper, HS ;
Deppisch, LM ;
Kahn, EI ;
Lev, R ;
Manley, PN ;
Pascal, RR ;
Qizilbash, AH ;
Rickert, RR ;
Silverman, JF ;
Wirman, JA .
HUMAN PATHOLOGY, 1998, 29 (01) :15-26
[9]  
de Leon MP, 2001, DIGEST LIVER DIS, V33, P372
[10]   Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools [J].
Diaz, Oliver ;
Kushibar, Kaisar ;
Osuala, Richard ;
Linardos, Akis ;
Garrucho, Lidia ;
Igual, Laura ;
Radeva, Petia ;
Prior, Fred ;
Gkontra, Polyxeni ;
Lekadir, Karim .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :25-37