Extension of generic two-component VOF interface advection schemes to an arbitrary number of components

被引:6
作者
Ancellin, Matthieu [1 ,2 ]
Despres, Bruno [3 ,4 ]
Jaouen, Stephane [1 ,5 ]
机构
[1] CEA, DAM, DIF, F-91297 Arpajon, France
[2] Univ Paris Saclay, Ctr Borelli, CNRS, ENS Paris Saclay, F-91190 Gif sur Yvette, France
[3] Univ Paris, Sorbonne Univ, CNRS, Lab Jacques Louis LJLL L, F-75005 Paris, France
[4] Inst Univ France, Paris, France
[5] Univ Paris Saclay, CEA DAM DIF, Lab Informat Haute Performance Calcul & simulat, F-91297 Arpajon, France
关键词
Finite volume; Interface; Volume-of-fluid; FINITE-VOLUME APPROXIMATION; RECONSTRUCTION METHOD; TRACKING; TRANSPORT; 2ND-ORDER; FLOW; ALGORITHM; SURFACE;
D O I
10.1016/j.jcp.2022.111721
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a new and simple method to extend any two-fluid dimensionally split VOF schemes on Cartesian meshes to N-fluid problems in 2D and 3D. The method is symmetric by permutation of the fluids, so that it is independent of the ordering of materials, and guarantees natural properties of the volume fractions. The method is called Renormalized VOF or ReVOF, since it relies on a new renormalization algorithm to post-process N independent calls to two-fluid numerical fluxes. Proof that the algorithm finishes is given. Various numerical test cases for advection, rotation and distorsion of three to five fluids in 2D are presented, along with a 3D example. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 42 条
[1]  
Benson D.J., 2002, Appl. Mech. Rev, V55, P151, DOI [DOI 10.1115/1.1448524, 10.1115/1.1448524]
[2]   Julia: A Fresh Approach to Numerical Computing [J].
Bezanson, Jeff ;
Edelman, Alan ;
Karpinski, Stefan ;
Shah, Viral B. .
SIAM REVIEW, 2017, 59 (01) :65-98
[3]   Dealing with more than two materials in the FVCF-ENIP method [J].
Blais, Bruno ;
Braeunig, Jean-Philippe ;
Chauveheid, Daniel ;
Ghidaglia, Jean-Michel ;
Loubere, Raphael .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2013, 42 :1-9
[4]   A piecewise linear approach to volume tracking a triple point [J].
Choi, Benjamin Y. ;
Bussmann, Markus .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2007, 53 (06) :1005-1018
[5]   An analytical interface reconstruction algorithm in the PLIC-VOF method for 2D polygonal unstructured meshes [J].
Dai, Dezhi ;
Tong, Albert Y. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2018, 88 (06) :265-276
[6]   A geometrically accurate low-diffusive conservative interface capturing method suitable for multimaterial flows [J].
De Vuyst, Florian ;
Fochesato, Christophe ;
Mahy, Vincent ;
Motte, Renaud ;
Peybernes, Mathieu .
COMPUTERS & FLUIDS, 2021, 227
[7]   Probabilistic Analysis of the Upwind Scheme for Transport Equations [J].
Delarue, Francois ;
Lagoutiere, Frederic .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (01) :229-268
[8]   An explicit a priori estimate for a finite volume approximation of linear advection on non-Cartesian grids [J].
Després, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :484-504
[9]   A non-linear anti-diffusive scheme for the linens advection equation [J].
Després, B ;
Lagoutière, F .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (10) :939-943
[10]  
Despres B., 2002, J SCI COMPUT, V328, P939