Modified ridge-type estimator for the inverse Gaussian regression model

被引:6
作者
Akram, Muhammad Nauman [1 ]
Amin, Muhammad [1 ]
Ullah, Muhammad Aman [2 ]
Afzal, Saima [2 ]
机构
[1] Univ Sargodha, Dept Stat, Sargodha, Pakistan
[2] Bahauddin Zakariya Univ, Dept Stat, Multan, Pakistan
关键词
IGRM; multicollinearity; IGMRTE; MLE; ridge estimator; PERFORMANCE;
D O I
10.1080/03610926.2021.1970773
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the parameter estimation for the inverse Gaussian regression model (IGRM) in the presence of multicollinearity. The inverse Gaussian modified ridge-type estimator (IGMRTE) is developed for efficient parameter estimation and compared with other estimation methods such as the maximum likelihood estimator (MLE), ridge and Liu estimator. We derived the properties of the proposed estimator and conducted a theoretical comparison with some of the existing estimators using the matrix mean squared error and mean squared error criterions. Furthermore, the statistical properties of these estimators are systematically scrutinized via a Monte Carlo simulation study under different conditions. The findings of the simulation study demonstrate that the proposed IGMRTE showed a much more robust behavior in the presence of severe multicollinearity. A real life example is also analyzed to evaluate the effectiveness of the estimators under study. Both the simulation and the application results confirm the use of IGMRTE for the estimation of unknown regression coefficients of the IGRM when the explanatory variables are highly correlated.
引用
收藏
页码:3314 / 3332
页数:19
相关论文
共 47 条
[1]  
Akdeniz F., 2001, INDIAN J STAT, V63, P321, DOI DOI 10.2307/25053183
[2]   James Stein Estimator for the Inverse Gaussian Regression Model [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Amanullah, Muhammad .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2021, 45 (04) :1389-1403
[3]   A new Liu-type estimator for the Inverse Gaussian Regression Model [J].
Akram, Muhammad Nauman ;
Amin, Muhammad ;
Qasim, Muhammad .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (07) :1153-1172
[4]   Two-parameter estimator for the inverse Gaussian regression model [J].
Akram, Muhammad Naumanm ;
Amin, Muhammad ;
Amanullah, Muhammad .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) :6208-6226
[5]   Performance of ridge estimator in inverse Gaussian regression model [J].
Algamal, Zakariya Yahya .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (15) :3836-3849
[6]   Developing a ridge estimator for the gamma regression model [J].
Algamal, Zakariya Yahya .
JOURNAL OF CHEMOMETRICS, 2018, 32 (10)
[7]   Shrinkage estimators for gamma regression model [J].
Algamal, Zakariya Yahya .
ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2018, 11 (01) :253-268
[8]  
Alheety M. I., 2009, Surveys in Mathematics and Its Applications, V4, P155
[9]   Optimization of Lipase Production by Response Surface Methodology and Its Application for Efficient Biodegradation of Polyester vylon-200 [J].
Amin, Misbah ;
Bhatti, Haq Nawaz ;
Sadaf, Sana ;
Bilal, Muhammad .
CATALYSIS LETTERS, 2021, 151 (12) :3603-3616
[10]   Influence diagnostics in the inverse Gaussian ridge regression model: Applications in chemometrics [J].
Amin, Muhammad ;
Faisal, Muhammad ;
Akram, Muhammad Nauman .
JOURNAL OF CHEMOMETRICS, 2021, 35 (06)