Tunneling field-effect transistors with two-dimensional BiN as the channel semiconductor

被引:0
|
作者
Yan, Saichao [1 ,2 ]
Wang, Kang [3 ,4 ]
Guo, Zhixin [5 ]
Wu, Yu-Ning [1 ,2 ]
Chen, Shiyou [3 ,4 ]
机构
[1] East China Normal Univ, Key Lab Polar Mat & Devices MOE, Shanghai 200062, Peoples R China
[2] East China Normal Univ, Dept Elect, Shanghai 200062, Peoples R China
[3] Fudan Univ, Sch Microelect, Shanghai 200433, Peoples R China
[4] Fudan Univ, Key Lab Computat Phys Sci MOE, Shanghai 200433, Peoples R China
[5] Xi An Jiao Tong Univ, Ctr Spintron & Quantum Syst, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-PERFORMANCE; MONOLAYER; TRANSPORT;
D O I
10.1063/5.0191376
中图分类号
O59 [应用物理学];
学科分类号
摘要
The lack of suitable channel semiconductor materials has been a limiting factor in the development of tunneling field-effect transistor (TFET) architectures due to the stringent criteria of both air stability and excellent gate-tunable electronic properties. Here, we report the performance limits of sub-10-nm double-gated monolayer (ML) BiN TFETs by utilizing first-principles quantum-transport simulations. We find that ML BiN possesses an indirect bandgap of 0.8 eV and effective masses of 0.24m(0) and 2.24m(0) for electrons and holes, respectively. The n-type BiN TFETs exhibit better performance than the p-type ones, and the on-state current can well satisfy the requirements of the International Roadmap for Devices and Systems for both high-performance and low-power standards. Notably, we find that the BiN TFETs exhibit distinguished gate controllability with an ultra-low subthreshold swing below 60 mV/decade even with a small gate length of 6 nm, which is superior to the existing field-effect transistors, such as black phosphorus TFETs, GeSe TFETs, and BiN metal-oxide-semiconductor field-effect transistors. Furthermore, the BiN TFETs are endowed with the potential to realize high switching speed and low-power consumption applications because of their extremely short delay time and ultra-low power-delay product. Our results reveal that the ML BiN is a highly competitive channel material for the next-generation TFETs.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Field-effect transistors based on two-dimensional materials for logic applications
    王欣然
    施毅
    张荣
    Chinese Physics B, 2013, (09) : 151 - 165
  • [22] Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors
    Illarionov, Yury Yu
    Banshchikov, Alexander G.
    Polyushkin, Dmitry K.
    Wachter, Stefan
    Knobloch, Theresia
    Thesberg, Mischa
    Mennel, Lukas
    Paur, Matthias
    Stoeger-Pollach, Michael
    Steiger-Thirsfeld, Andreas
    Vexler, Mikhail, I
    Walt, Michael
    Sokolov, Nikolai S.
    Mueller, Thomas
    Grasser, Tibor
    NATURE ELECTRONICS, 2019, 2 (06) : 230 - 235
  • [23] Modulating tunneling width and energy window for high-on-current two-dimensional tunnel field-effect transistors
    Zhou, Wenhan
    Zhang, Shengli
    Cao, Jiang
    Wu, Zhenhua
    Wang, Yangyang
    Zhang, Yunwei
    Yan, Zhong
    Qu, Hengze
    Zeng, Haibo
    NANO ENERGY, 2021, 81
  • [24] Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors
    Nobutaka Oi
    Masafumi Inaba
    Satoshi Okubo
    Ikuto Tsuyuzaki
    Taisuke Kageura
    Shinobu Onoda
    Atsushi Hiraiwa
    Hiroshi Kawarada
    Scientific Reports, 8
  • [25] Monolithic three-dimensional integration of complementary two-dimensional field-effect transistors
    Pendurthi, Rahul
    Sakib, Najam U.
    Sadaf, Muhtasim Ul Karim
    Zhang, Zhiyu
    Sun, Yongwen
    Chen, Chen
    Jayachandran, Darsith
    Oberoi, Aaryan
    Ghosh, Subir
    Kumari, Shalini
    Stepanoff, Sergei P.
    Somvanshi, Divya
    Yang, Yang
    Redwing, Joan M.
    Wolfe, Douglas E.
    Das, Saptarshi
    NATURE NANOTECHNOLOGY, 2024, 19 (07) : 970 - +
  • [26] An index-free sparse neural network using two-dimensional semiconductor ferroelectric field-effect transistors
    Ning, Hongkai
    Wen, Hengdi
    Meng, Yuan
    Yu, Zhihao
    Fu, Yuxiang
    Zou, Xilu
    Shen, Yilin
    Luo, Xiai
    Zhao, Qiyue
    Zhang, Tao
    Liu, Lei
    Zhu, Shitong
    Li, Taotao
    Li, Weisheng
    Li, Li
    Gao, Li
    Shi, Yi
    Wang, Xinran
    NATURE ELECTRONICS, 2025, : 222 - 234
  • [27] Vertical-type two-dimensional hole gas diamond metal oxide semiconductor field-effect transistors
    Oi, Nobutaka
    Inaba, Masafumi
    Okubo, Satoshi
    Tsuyuzaki, Ikuto
    Kageura, Taisuke
    Onoda, Shinobu
    Hiraiwa, Atsushi
    Kawarada, Hiroshi
    SCIENTIFIC REPORTS, 2018, 8
  • [28] Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors
    Ma, Nan
    Jena, Debdeep
    2D MATERIALS, 2015, 2 (01):
  • [29] CALCULATION OF ELECTRONIC DENSITY OF THE TWO-DIMENSIONAL GAS IN TWO-DIMENSIONAL ELECTRON-GAS FIELD-EFFECT TRANSISTORS
    ZIMMERMANN, B
    PALMIER, JF
    PY, M
    ILEGEMS, M
    HELVETICA PHYSICA ACTA, 1987, 60 (02): : 268 - 273
  • [30] Full Two-Dimensional Ambipolar Field-Effect Transistors for Transparent and Flexible Electronics
    Ming, Ziyu
    Sun, Haoran
    Wang, Hu
    Sheng, Zhe
    Wang, Yue
    Zhang, Zengxing
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 45131 - 45138