Rapid automated lumen segmentation of coronary optical coherence tomography images followed by 3D reconstruction of coronary arteries

被引:0
作者
Wu, Wei [1 ]
Roby, Merjulah [2 ]
Banga, Akshat [1 ]
Oguz, Usama M. [1 ]
Gadamidi, Vinay Kumar [1 ]
Hasini Vasa, Charu [1 ]
Zhao, Shijia [1 ]
Dasari, Vineeth S. [1 ]
Thota, Anjani Kumar [1 ]
Tanweer, Sartaj [1 ]
Lee, Changkye [1 ]
Kassab, Ghassan S. [3 ]
Chatzizisis, Yiannis S. [1 ]
机构
[1] Univ Miami, Ctr Digital Cardiovasc Innovat, Miller Sch Med, Div Cardiovasc Med, Miami, FL 33136 USA
[2] Univ Texas San Antonio, Dept Mech Engn Vasc Biomech & Biofluids, San Antonio, TX USA
[3] Calif Med Innovat Inst, San Diego, CA USA
基金
美国国家卫生研究院;
关键词
optical coherence tomography; image segmentation; nonuniform rational B-spline; three-dimensional reconstruction; OCT; ACCURATE;
D O I
10.1117/1.JMI.11.1.014004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Optical coherence tomography has emerged as an important intracoronary imaging technique for coronary artery disease diagnosis as it produces high-resolution cross-sectional images of luminal and plaque morphology. Precise and fast lumen segmentation is essential for efficient OCT morphometric analysis. However, due to the presence of various image artifacts, including side branches, luminal blood artifacts, and complicated lesions, this remains a challenging task. Approach: Our research study proposes a rapid automatic segmentation method that utilizes nonuniform rational B-spline to connect limited pixel points and identify the edges of the OCT lumen. The proposed method suppresses image noise and accurately extracts the lumen border with a high correlation to ground truth images based on the area, minimal diameter, and maximal diameter. Results: We evaluated the method using 3300 OCT frames from 10 patients and found that it achieved favorable results. The average time taken for automatic segmentation by the proposed method is 0.17 s per frame. Additionally, the proposed method includes seamless vessel reconstruction following the lumen segmentation. Conclusions: The developed automated system provides an accurate, efficient, robust, and user-friendly platform for coronary lumen segmentation and reconstruction, which can pave the way for improved assessment of the coronary artery lumen morphology. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.Distribution or reproduction of this work in whole or in part requires full attribution of the originalpublication, including its DOI.
引用
收藏
页数:20
相关论文
共 27 条
[1]   Deep feature learning for automatic tissue classification of coronary artery using optical coherence tomography [J].
Abdolmanafi, Atefeh ;
Duong, Luc ;
Dahdah, Nagib ;
Cheriet, Farida .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :1203-1220
[2]   Automated accurate lumen segmentation using L-mode interpolation for three-dimensional intravascular optical coherence tomography [J].
Akbar, Arsalan ;
Khwaja, T. S. ;
Javaid, Ammar ;
Kim, Jun-Sun ;
Ha, Jinyong .
BIOMEDICAL OPTICS EXPRESS, 2019, 10 (10) :5325-5336
[3]   Methodology for fully automated segmentation and plaque characterization in intracoronary optical coherence tomography images [J].
Athanasiou, Lambros S. ;
Bourantas, Christos V. ;
Rigas, George ;
Sakellarios, Antonis I. ;
Exarchos, Themis P. ;
Siogkas, Panagiotis K. ;
Ricciardi, Andrea ;
Naka, Katerina K. ;
Papafaklis, Michail I. ;
Michalis, Lampros K. ;
Prati, Francesco ;
Fotiadis, Dimitrios I. .
JOURNAL OF BIOMEDICAL OPTICS, 2014, 19 (02)
[4]   Coronary artery segmentation from intravascular optical coherence tomography using deep capsules [J].
Balaji, Arjun ;
Kelsey, Lachlan J. ;
Majeed, Kamran ;
Schultz, Carl J. ;
Doyle, Barry J. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 116
[5]   Automatic segmentation of optical coherence tomography pullbacks of coronary arteries treated with bioresorbable vascular scaffolds: Application to hemodynamics modeling [J].
Bologna, Marco ;
Migliori, Susanna ;
Montin, Eros ;
Rampat, Rajiv ;
Dubini, Gabriele ;
Migliavacca, Francesco ;
Mainardi, Luca ;
Chiastra, Claudio .
PLOS ONE, 2019, 14 (03)
[6]   Automatic lumen segmentation from intravascular OCT images [J].
Bourezak, Rafik ;
Lamouche, Guy ;
Cheriet, Farida .
MEDICAL IMAGING 2010: COMPUTER - AIDED DIAGNOSIS, 2010, 7624
[7]   Automatic Side Branch Ostium Detection and Main Vascular Segmentation in Intravascular Optical Coherence Tomography Images [J].
Cao, Yihui ;
Jin, Qinhua ;
Chen, Yundai ;
Yin, Qinye ;
Qin, Xianjing ;
Li, Jianan ;
Zhu, Rui ;
Zhao, Wei .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2018, 22 (05) :1531-1539
[8]   In-vivo segmentation and quantification of coronary lesions by optical coherence tomography images for a lesion type definition and stenosis grading [J].
Celi, Simona ;
Berti, Sergio .
MEDICAL IMAGE ANALYSIS, 2014, 18 (07) :1157-1168
[9]   ARC-OCT: Automatic detection of lumen border in intravascular OCT images [J].
Cheimariotis, Grigorios-Aris ;
Chatzizisis, Yiannis S. ;
Koutkias, Vassilis G. ;
Toutouzas, Konstantinos ;
Giannopoulos, Andreas ;
Riga, Maria ;
Chouvarda, Ioanna ;
Antoniadis, Antonios P. ;
Doulaverakis, Charalambos ;
Tsamboulatidis, Ioannis ;
Kompatsiaris, Ioannis ;
Giannoglou, George D. ;
Maglaveras, Nicos .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 151 :21-32
[10]   Computational replication of the patient-specific stenting procedure for coronary artery bifurcations: From OCT and CT imaging to structural and hemodynamics analyses [J].
Chiastra, Claudio ;
Wu, Wei ;
Dickerhoff, Benjamin ;
Aleiou, Ali ;
Dubini, Gabriele ;
Otake, Hiromasa ;
Migliavacca, Francesco ;
LaDisa, John F., Jr. .
JOURNAL OF BIOMECHANICS, 2016, 49 (11) :2102-2111