A bivariate, non-stationary extreme value model for estimating opposing-through crash frequency by severity by applying artificial intelligence-based video analytics
被引:8
作者:
Howlader, Md Mohasin
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, AustraliaQueensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, Australia
Howlader, Md Mohasin
[1
]
Bhaskar, Ashish
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, AustraliaQueensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, Australia
Bhaskar, Ashish
[1
]
Yasmin, Shamsunnahar
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Ctr Accid Res & Rd Safety Queensland CARRS Q, Brisbane, Qld 4059, AustraliaQueensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, Australia
Yasmin, Shamsunnahar
[2
]
Haque, Md Mazharul
论文数: 0引用数: 0
h-index: 0
机构:
Queensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, AustraliaQueensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, Australia
Haque, Md Mazharul
[1
]
机构:
[1] Queensland Univ Technol QUT, Fac Engn, Sch Civil & Environm Engn, Brisbane, Qld 4000, Australia
[2] Queensland Univ Technol QUT, Ctr Accid Res & Rd Safety Queensland CARRS Q, Brisbane, Qld 4059, Australia
Traffic conflict techniques;
Video analytics;
Bivariate generalised extreme value model;
Non-stationarity;
Crash frequency by severity;
Post encroachment time;
SAFETY ANALYSIS;
D O I:
10.1016/j.trc.2024.104509
中图分类号:
U [交通运输];
学科分类号:
08 ;
0823 ;
摘要:
Multivariate extreme value modelling techniques are widely applied to estimate crash risks from traffic conflicts, with a predominant focus on rear-end crashes. In contrast, the suitability of conflict measures within a multivariate framework for estimating opposing-through crash risks has received less attention. This study proposes a non-stationary bivariate extreme value model to identify a suitable set of traffic conflict measures for estimating opposing-through crashes (i.e., right-turn crashes for left-hand driving conditions and vice versa) by severity levels. In the proposed Generalised Extreme Value model, three crossing course conflict measures were considered, including post encroachment time (PET), gap time (GT), and supplementary time-tocollision (T2min). Artificial intelligence-based video analytics were employed to extract these opposing-through conflict measures from a total of 144 h of video recordings of four permissible right-turn approaches for three signalised intersections in Brisbane, Australia. The models included exposure variables such as conflicting volume, right-turning volume and through volume, and evasive action-based variables like deceleration and relative velocities measured at the signal cycle level to account for non-stationarity in the extreme value models. Results suggested that a bivariate model with PET and GT as the traffic conflict measures performs better than a univariate model or other combinations of traffic conflict measures in the bivariate models. This PET-GT combination of conflict measures also showed better accuracy in estimating opposingthrough crash frequencies by severity levels when combined with the (Delta-V) based severity measure. This study demonstrated the importance of accounting for various stages of opposingthrough conflicts within a bivariate extreme value model to predict crash risks.
引用
收藏
页数:26
相关论文
共 46 条
[1]
Advanced Mobility Analytics Group (AMAG), 2021, About us
[2]
Allen BL., 1978, Analysis of traffic conflicts and collisions
机构:
Univ Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, HungaryUniv Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, Hungary
Borsos, Attila
论文数: 引用数:
h-index:
机构:
Farah, Haneen
Laureshyn, Aliaksei
论文数: 0引用数: 0
h-index: 0
机构:
Lund Univ, Dept Technol & Soc, John Ericssons Vag 1,1 TR, Lund, SwedenUniv Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, Hungary
Laureshyn, Aliaksei
Hagenzieker, Marjan
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Dept Transport & Planning, Stevinweg 1, NL-2628 CN Delft, NetherlandsUniv Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, Hungary
机构:
Univ Coimbra, Dept Civil Engn, CITTA, Rua Luis Reis Santos Polo 2, P-3030788 Coimbra, PortugalUniv Coimbra, Dept Civil Engn, CITTA, Rua Luis Reis Santos Polo 2, P-3030788 Coimbra, Portugal
Cavadas, Joana
Azevedo, Carlos Lima
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Denmark, Dept Technol Management & Econ, Anker Engelunds Vej 1, DK-2800 Lyngby, DenmarkUniv Coimbra, Dept Civil Engn, CITTA, Rua Luis Reis Santos Polo 2, P-3030788 Coimbra, Portugal
机构:
Univ Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, HungaryUniv Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, Hungary
Borsos, Attila
论文数: 引用数:
h-index:
机构:
Farah, Haneen
Laureshyn, Aliaksei
论文数: 0引用数: 0
h-index: 0
机构:
Lund Univ, Dept Technol & Soc, John Ericssons Vag 1,1 TR, Lund, SwedenUniv Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, Hungary
Laureshyn, Aliaksei
Hagenzieker, Marjan
论文数: 0引用数: 0
h-index: 0
机构:
Delft Univ Technol, Dept Transport & Planning, Stevinweg 1, NL-2628 CN Delft, NetherlandsUniv Gyor, Dept Transport Infrastruct & Water Resources Engn, Egyet Ter 1, H-9026 Gyor, Hungary
机构:
Univ Coimbra, Dept Civil Engn, CITTA, Rua Luis Reis Santos Polo 2, P-3030788 Coimbra, PortugalUniv Coimbra, Dept Civil Engn, CITTA, Rua Luis Reis Santos Polo 2, P-3030788 Coimbra, Portugal
Cavadas, Joana
Azevedo, Carlos Lima
论文数: 0引用数: 0
h-index: 0
机构:
Tech Univ Denmark, Dept Technol Management & Econ, Anker Engelunds Vej 1, DK-2800 Lyngby, DenmarkUniv Coimbra, Dept Civil Engn, CITTA, Rua Luis Reis Santos Polo 2, P-3030788 Coimbra, Portugal