This sequel continues our exploration (Fiedler and Rocha in Chaos 33:083127, 2023. https://doi.org/10.1063/5.0147634) of a deceptively "simple" class of global attractors, called Sturm due to nodal properties. They arise for the semilinear scalar parabolic PDE on the unit interval 0<x<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< x<1$$\end{document}, under Neumann boundary conditions. This models the interplay of reaction, advection, and diffusion. Our classification is based on the Sturm meanders, which arise from a shooting approach to the ODE boundary value problem of equilibrium solutions u=v(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=v(x)$$\end{document}. Specifically, we address meanders with only three "noses", each of which is innermost to a nested family of upper or lower meander arcs. The Chafee-Infante paradigm of 1974, with cubic nonlinearity f=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=f(u)$$\end{document}, features just two noses. We present, and fully prove, a precise description of global PDE connection graphs, graded by Morse index, for such gradient-like Morse-Smale systems. The directed edges denote PDE heteroclinic orbits between equilibrium vertices v1,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, v_2$$\end{document} of adjacent Morse index. The connection graphs can be described as a lattice-like structure of Chafee-Infante subgraphs. However, this simple description requires us to adjoin a single "equilibrium" vertex, formally, at Morse level -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}. Surprisingly, for parabolic PDEs based on irreversible diffusion, the connection graphs then also exhibit global time reversibility.