Design of Sturm global attractors 2: Time-reversible Chafee-Infante lattices of 3-nose meanders

被引:0
|
作者
Fiedler, Bernold [1 ]
Rocha, Carlos [2 ]
机构
[1] Free Univ Berlin, Inst Math, Arnimallee 3, D-14195 Berlin, Germany
[2] Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
来源
关键词
Parabolic partial differential equation; Nodal property; Connection graph; Heteroclinic orbit; Morse theory; Reversibility; Continued fraction; EQUATIONS; ORBITS;
D O I
10.1007/s40863-023-00385-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This sequel continues our exploration (Fiedler and Rocha in Chaos 33:083127, 2023. https://doi.org/10.1063/5.0147634) of a deceptively "simple" class of global attractors, called Sturm due to nodal properties. They arise for the semilinear scalar parabolic PDE on the unit interval 0<x<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0< x<1$$\end{document}, under Neumann boundary conditions. This models the interplay of reaction, advection, and diffusion. Our classification is based on the Sturm meanders, which arise from a shooting approach to the ODE boundary value problem of equilibrium solutions u=v(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=v(x)$$\end{document}. Specifically, we address meanders with only three "noses", each of which is innermost to a nested family of upper or lower meander arcs. The Chafee-Infante paradigm of 1974, with cubic nonlinearity f=f(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=f(u)$$\end{document}, features just two noses. We present, and fully prove, a precise description of global PDE connection graphs, graded by Morse index, for such gradient-like Morse-Smale systems. The directed edges denote PDE heteroclinic orbits between equilibrium vertices v1,v2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v_1, v_2$$\end{document} of adjacent Morse index. The connection graphs can be described as a lattice-like structure of Chafee-Infante subgraphs. However, this simple description requires us to adjoin a single "equilibrium" vertex, formally, at Morse level -1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-1$$\end{document}. Surprisingly, for parabolic PDEs based on irreversible diffusion, the connection graphs then also exhibit global time reversibility.
引用
收藏
页码:975 / 1014
页数:40
相关论文
共 2 条
  • [1] Sturm 3-Ball Global Attractors 2: Design of Thom–Smale Complexes
    Bernold Fiedler
    Carlos Rocha
    Journal of Dynamics and Differential Equations, 2019, 31 : 1549 - 1590
  • [2] Sturm 3-Ball Global Attractors 2: Design of Thom-Smale Complexes
    Fiedler, Bernold
    Rocha, Carlos
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2019, 31 (03) : 1549 - 1590