Individual tree detection and counting based on high-resolution imagery and the canopy height model data

被引:5
|
作者
Zhang, Ye [1 ,2 ]
Wang, Moyang [1 ,2 ]
Mango, Joseph [3 ]
Xin, Liang [4 ,5 ]
Meng, Chen [6 ]
Li, Xiang [1 ,2 ,7 ,8 ]
机构
[1] East China Normal Univ, Key Lab Geog Informat Sci, Minist Educ, Shanghai, Peoples R China
[2] East China Normal Univ, Sch Geog Sci, Shanghai, Peoples R China
[3] Univ Dar es Salaam, Dept Transportat & Geotech Engn, Dar Es Salaam, Tanzania
[4] Tongji Univ, Coll Surveying & Geog Informat, Shanghai, Peoples R China
[5] Cadre Sch Shanghai Municipal Bur Planning & Nat R, Shanghai, Peoples R China
[6] East China Normal Univ, Sch Ecol & Environm Sci, Shanghai, Peoples R China
[7] East China Normal Univ, Shanghai Key Lab Urban Ecol Proc & Ecores, Shanghai, Peoples R China
[8] East China Normal Univ, Key Lab Spatial Temporal Big Data Anal & Applicat, Minist Nat Resources, Shanghai, Peoples R China
关键词
Individual tree detection-and-counting (ITDC); deep learning; high-resolution imagery; Canopy Height Model data (CHM); LIDAR; UAV; URBAN; CROWN; DELINEATION; INVENTORY;
D O I
10.1080/10095020.2023.2299146
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Individual Tree Detection-and-Counting (ITDC) is among the important tasks in town areas, and numerous methods are proposed in this direction. Despite their many advantages, still, the proposed methods are inadequate to provide robust results because they mostly rely on the direct field investigations. This paper presents a novel approach involving high-resolution imagery and the Canopy-Height-Model (CHM) data to solve the ITDC problem. The new approach is studied in six urban scenes: farmland, woodland, park, industrial land, road and residential areas. First, it identifies tree canopy regions using a deep learning network from high-resolution imagery. It then deploys the CHM-data to detect treetops of the canopy regions using a local maximum algorithm and individual tree canopies using the region growing. Finally, it calculates and describes the number of individual trees and tree canopies. The proposed approach is experimented with the data from Shanghai, China. Our results show that the individual tree detection method had an average overall accuracy of 0.953, with a precision of 0.987 for woodland scene. Meanwhile, the R-2 value for canopy segmentation in different urban scenes is greater than 0.780 and 0.779 for canopy area and diameter size, respectively. These results confirm that the proposed method is robust enough for urban tree planning and management.
引用
收藏
页码:2162 / 2178
页数:17
相关论文
共 50 条
  • [1] Unsupervised individual tree crown detection in high-resolution satellite imagery
    Skurikhin, Alexei N.
    McDowell, Nate G.
    Middleton, Richard S.
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [2] CNN-Based Individual Tree Species Classification Using High-Resolution Satellite Imagery and Airborne LiDAR Data
    Li, Hui
    Hu, Baoxin
    Li, Qian
    Jing, Linhai
    FORESTS, 2021, 12 (12):
  • [3] Individual tree detection in large-scale urban environments using high-resolution multispectral imagery
    Ventura, Jonathan
    Pawlak, Camille
    Honsberger, Milo
    Gonsalves, Cameron
    Rice, Julian
    Love, Natalie L. R.
    Han, Skyler
    Nguyen, Viet
    Sugano, Keilana
    Doremus, Jacqueline
    Fricker, G. Andrew
    Yost, Jenn
    Ritter, Matt
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [4] High-Resolution Canopy Height Model Generation and Validation Using USGS 3DEP LiDAR Data in Indiana, USA
    Oh, Sungchan
    Jung, Jinha
    Shao, Guofan
    Shao, Gang
    Gallion, Joey
    Fei, Songlin
    REMOTE SENSING, 2022, 14 (04)
  • [5] Classification of Individual Tree Species in High-Resolution Remote Sensing Imagery Based on Convolution Neural Network
    Ouyang Guang
    Jing Linhai
    Yan Shijie
    Li Hui
    Tang Yunwei
    Tan Bingxiang
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (02)
  • [6] Oil Palm Tree Detection and Health Classification on High-Resolution Imagery Using Deep Learning
    Yarak, Kanitta
    Witayangkurn, Apichon
    Kritiyutanont, Kunnaree
    Arunplod, Chomchanok
    Shibasaki, Ryosuke
    AGRICULTURE-BASEL, 2021, 11 (02): : 1 - 17
  • [7] High-resolution Mapping of Forest Canopy Height by Integrating Sentinel and airborne LiDAR data
    Zhang, Ya
    Liu, Xianwei
    Liu, Jing
    Li, Longhui
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6037 - 6040
  • [8] A general deep learning model for bird detection in high-resolution airborne imagery
    Weinstein, Ben G.
    Garner, Lindsey
    Saccomanno, Vienna R.
    Steinkraus, Ashley
    Ortega, Andrew
    Brush, Kristen
    Yenni, Glenda
    McKellar, Ann E.
    Converse, Rowan
    Lippitt, Christopher D.
    Wegmann, Alex
    Holmes, Nick D.
    Edney, Alice J.
    Hart, Tom
    Jessopp, Mark J.
    Clarke, Rohan H.
    Marchowski, Dominik
    Senyondo, Henry
    Dotson, Ryan
    White, Ethan P.
    Frederick, Peter
    Ernest, S. K. Morgan
    ECOLOGICAL APPLICATIONS, 2022, 32 (08)
  • [9] Coupling high-resolution satellite imagery with ALS-based canopy height model and digital elevation model in object-based boreal forest habitat type classification
    Rasanen, Aleksi
    Kuitunen, Markku
    Tomppo, Erkki
    Lensu, Anssi
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 94 : 169 - 182
  • [10] Individual Tree-Crown Detection and Species Classification in Very High-Resolution Remote Sensing Imagery Using a Deep Learning Ensemble Model
    Plesoianu, Alin-Ionut
    Stupariu, Mihai-Sorin
    Sandric, Ionut
    Patru-Stupariu, Ileana
    Dragut, Lucian
    REMOTE SENSING, 2020, 12 (15)