Using a static magnetic field to control the rate of latent energy storage and release of phase-change materials

被引:2
作者
Yehya, Alissar [1 ,2 ]
Adebayo, Philip [3 ]
Naji, Hassan [4 ]
机构
[1] Amer Univ Beirut, Maroun Semaan Fac Engn & Architecture, Dept Civil & Environm Engn, Beirut, Lebanon
[2] Harvard John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[3] Univ Calgary, Schulich Sch Engn, Calgary, AB, Canada
[4] Univ Lille, Univ Artois, IMT Nord Europe, JUNIA,ULR 4515,Lab Genie Civil & Geoenvironm LGCgE, F-62400 Bethune, France
关键词
Phase change materials (PCM); Static magnetic field; Solidification; Melting; Latent heat storage; Scaling laws; HEAT-TRANSFER ENHANCEMENT; N-OCTADECANE; SOLIDIFICATION;
D O I
10.1016/j.est.2023.110275
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Latent energy storage, using phase change materials (PCMs), has the potential to improve energy system efficiency, help reduce the energy supply and demand gap, and to contribute significantly to energy savings. However, the dynamics of the phase-change process affects the system's efficiency. Coordination between the melting and solidification duration and the increase in energy demand is essential to exploit the full potential of PCMs. This study deals with an experimental investigation of the use of a static magnetic field (SMF) generated by magnets to control the melting and solidification of Octadecane as a PCM. It is then supported using heat transfer scaling laws. Experimental results demonstrate that a magnetic field of 240 mT can delay the phase change process by up to 23 % if applied opposite to the buoyancy force across the entire surface of the enclosure. The used scaling laws show that an extremely high magnetic field can suppress the convection effect, thus, extremely slowing down the phase change process since the PCMs have relatively low thermal conductivity. Also, it is found that PCMs with a low Prandtl number and high electrical conductance are more sensitive to the magnetic field effect and, thereby, are advocated for future studies. Finally, this work aims at the development of techniques that allow the control of the rate at which energy should be stored or released in a latent heat system with PCMs and coordinate it with the subjected temperature variations.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Solar-powered hybrid energy storage system with phase change materials
    Oskouei, Seyedmohsen Baghaei
    Frate, Guido Francesco
    Christodoulaki, Rosa
    Bayer, Ozguer
    Akmandor, Ibrahim Sinan
    Desideri, Umberto
    Ferrari, Lorenzo
    Drosou, Vassiliki
    Tari, Ilker
    ENERGY CONVERSION AND MANAGEMENT, 2024, 302
  • [32] A review of nanomaterial incorporated phase change materials for solar thermal energy storage
    Nazari, Mohammad Alhuyi
    Maleki, Akbar
    Assad, Mamdouh El Haj
    Rosen, Marc A.
    Haghighi, Arman
    Sharabaty, Hassan
    Chen, Lingen
    SOLAR ENERGY, 2021, 228 : 725 - 743
  • [33] DYNAMIC THERMAL BEHAVIOUR OF BUILDING USING PHASE CHANGE MATERIALS FOR LATENT HEAT STORAGE
    Selka, Ghouti
    Korti, Abdel Illah Nabil
    Abboudi, Said
    THERMAL SCIENCE, 2015, 19 : S603 - S613
  • [34] Phase change materials for thermal energy storage
    Pielichowska, Kinga
    Pielichowski, Krzysztof
    PROGRESS IN MATERIALS SCIENCE, 2014, 65 : 67 - 123
  • [35] Recent Advances in Nanoencapsulated and Nano-Enhanced Phase-Change Materials for Thermal Energy Storage: A Review
    Khlissa, Faical
    Mhadhbi, Mohsen
    Aich, Walid
    Hussein, Ahmed Kadhim
    Alhadri, Muapper
    Selimefendigil, Fatih
    Oztop, Hakan F.
    Kolsi, Lioua
    PROCESSES, 2023, 11 (11)
  • [36] Biodegradable Polymeric Solid Framework-Based Organic Phase-Change Materials for Thermal Energy Storage
    Prajapati, Deepak G.
    Kandasubramanian, Balasubramanian
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (25) : 10652 - 10677
  • [37] Study on Heat Transfer Characteristics of Phase-Change Energy Storage Unit for Thermal Management
    Du, Yanxia
    Xiao, Guangming
    Gui, Yewei
    Liu, Lei
    Zhang, Lina
    Yu, Mingxing
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (08) : 1577 - 1589
  • [38] Experimental and computational investigation of a latent heat energy storage system with a staggered heat exchanger for various phase change materials
    Koukou, Maria K.
    Vrachopoulos, Michalis Gr
    Tachos, Nikolaos S.
    Dogkas, George
    Lymperis, Kostas
    Stathopoulos, Vassilis
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2018, 7 : 87 - 98
  • [39] An overview: Applications of thermal energy storage using phase change materials
    Ali, Shahid
    Deshmukh, S. P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 26 : 1231 - 1237
  • [40] Design and Synthesis of Microencapsulated Phase-Change Materials with a Poly(divinylbenzene)/Dioxide Titanium Hybrid Shell for Energy Storage and Formaldehyde Photodegradation
    Sun, Wenchang
    Wang, Xiaomei
    Zhang, Xu
    Kong, Xiangfei
    JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (38) : 20806 - 20815