Quality of T2-weighted MRI re-acquisition versus deep learning GAN image reconstruction: A multi-reader study

被引:5
作者
Belue, Mason J. [1 ]
Harmon, Stephanie A. [1 ]
Masoudi, Samira [2 ]
Barrett, Tristan [3 ]
Law, Yan Mee [4 ]
Purysko, Andrei S. [5 ]
Panebianco, Valeria [6 ]
Yilmaz, Enis C. [1 ]
Lin, Yue [1 ]
Jadda, Pavan Kumar [7 ]
Raavi, Sitarama [7 ]
Wood, Bradford J. [8 ,9 ]
Pinto, Peter A. [10 ]
Choyke, Peter L. [1 ]
Turkbey, Baris [1 ]
机构
[1] NCI, Mol Imaging Branch, NIH, 10 Ctr Dr,MSC 1182,Bldg 10,Room B3B85, Bethesda, MD 20892 USA
[2] Univ Calif San Diego, San Diego, CA USA
[3] Univ Cambridge, Dept Radiol, Cambridge, England
[4] Singapore Gen Hosp, Dept Radiol, Singapore, Singapore
[5] Cleveland Clin, Sect Abdominal Imaging, Cleveland, OH USA
[6] Sapienza Univ Rome, Dept Radiol, Rome, Italy
[7] NIH, Ctr Informat Technol, Bethesda, MD 20892 USA
[8] NCI, Ctr Intervent Oncol, NIH, Bethesda, MD 20892 USA
[9] NIH, Dept Radiol, Clin Ctr, Bethesda, MD USA
[10] NCI, Urol Oncol Branch, NIH, Bethesda, MD 20892 USA
关键词
Magnetic Resonance Imaging; Diagnostic Imaging; Image Quality; Artificial Intelligence; Generative Adversarial Networks; SIOG GUIDELINES; LOCAL TREATMENT; PROSTATE; DIAGNOSIS;
D O I
10.1016/j.ejrad.2023.111259
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To evaluate CycleGAN's ability to enhance T2-weighted image (T2WI) quality.Method: A CycleGAN algorithm was used to enhance T2WI quality. 96 patients (192 scans) were identified from patients who underwent multiple axial T2WI due to poor quality on the first attempt (RAD1) and improved quality on re-acquisition (RAD2). CycleGAN algorithm gave DL classifier scores (0-1) for quality quantification and produced enhanced versions of QI1 and QI2 from RAD1 and RAD2, respectively. A subset (n = 20 patients) was selected for a blinded, multi-reader study, where four radiologists rated T2WI on a scale of 1-4 for quality. The multi-reader study presented readers with 60 image pairs (RAD1 vs RAD2, RAD1 vs QI1, and RAD2 vs QI2), allowing for selecting sequence preferences and quantifying the quality changes.Results: The DL classifier correctly discerned 71.9 % of quality classes, with 90.6 % (96/106) as poor quality and 48.8 % (42/86) as diagnostic in original sequences (RAD1, RAD2). CycleGAN images (QI1, QI2) demonstrated quantitative improvements, with consistently higher DL classifier scores than original scans (p < 0.001). In the multi-reader analysis, CycleGAN demonstrated no qualitative improvements, with diminished overall quality and motion in QI2 in most patients compared to RAD2, with noise levels remaining similar (8/20). No readers preferred QI2 to RAD2 for diagnosis.Conclusion: Despite quantitative enhancements with CycleGAN, there was no qualitative boost in T2WI diagnostic quality, noise, or motion. Expert radiologists didn't favor CycleGAN images over standard scans, highlighting the divide between quantitative and qualitative metrics.
引用
收藏
页数:8
相关论文
共 25 条
[1]   National implementation of multi-parametric magnetic resonance imaging for prostate cancer detection - recommendations from a UK consensus meeting [J].
Appayya, Mrishta Brizmohun ;
Adshead, Jim ;
Ahmed, Hashim U. ;
Allen, Clare ;
Bainbridge, Alan ;
Barrett, Tristan ;
Giganti, Francesco ;
Graham, John ;
Haslam, Phil ;
Johnston, Edward W. ;
Kastner, Christof ;
Kirkham, Alexander P. S. ;
Lipton, Alexandra ;
McNeill, Alan ;
Moniz, Larissa ;
Moore, Caroline M. ;
Nabi, Ghulam ;
Padhani, Anwar R. ;
Parker, Chris ;
Patel, Amit ;
Pursey, Jacqueline ;
Richenberg, Jonathan ;
Staffurth, John ;
van der Meulen, Jan ;
Walls, Darren ;
Punwani, Shonit .
BJU INTERNATIONAL, 2018, 122 (01) :13-25
[2]   Update on Optimization of Prostate MR Imaging Technique and Image Quality [J].
Barrett, Tristan ;
Lee, Kang-Lung ;
de Rooij, Maarten ;
Giganti, Francesco .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2024, 62 (01) :1-15
[3]   A multicentre assessment of prostate MRI quality and compliance with UK and international standards [J].
Burn, P. R. ;
Freeman, S. J. ;
Andreou, A. ;
Burns-Cox, N. ;
Persad, R. ;
Barrett, T. .
CLINICAL RADIOLOGY, 2019, 74 (11) :894.e19-894.e25
[4]   Transfer Learning-Based Multi-Scale Denoising Convolutional Neural Network for Prostate Cancer Detection [J].
Chui, Kwok Tai ;
Gupta, Brij B. ;
Chi, Hao Ran ;
Arya, Varsha ;
Alhalabi, Wadee ;
Ruiz, Miguel Torres ;
Shen, Chien-Wen .
CANCERS, 2022, 14 (15)
[5]   Prostate MRI technical parameters standardization: A systematic review on adherence to PI-RADSv2 acquisition protocol [J].
Cuocolo, Renato ;
Stanzione, Arnaldo ;
Ponsiglione, Andrea ;
Verde, Francesco ;
Ventimiglia, Antonio ;
Romeo, Valeria ;
Petretta, Mario ;
Imbriaco, Massimo .
EUROPEAN JOURNAL OF RADIOLOGY, 2019, 120
[6]   ESUR/ESUI consensus statements on multi-parametric MRI for the detection of clinically significant prostate cancer: quality requirements for image acquisition, interpretation and radiologists' training [J].
de Rooij, Maarten ;
Israel, Bas ;
Tummers, Marcia ;
Ahmed, Hashim U. ;
Barrett, Tristan ;
Giganti, Francesco ;
Hamm, Bernd ;
Logager, Vibeke ;
Padhani, Anwar ;
Panebianco, Valeria ;
Puech, Philippe ;
Richenberg, Jonathan ;
Rouviere, Olivier ;
Salomon, Georg ;
Schoots, Ivo ;
Veltman, Jeroen ;
Villeirs, Geert ;
Walz, Jochen ;
Barentsz, Jelle O. .
EUROPEAN RADIOLOGY, 2020, 30 (10) :5404-5416
[7]   Understanding PI-QUAL for prostate MRI quality: a practical primer for radiologists [J].
Giganti, Francesco ;
Kirkham, Alex ;
Kasivisvanathan, Veeru ;
Papoutsaki, Marianthi-Vasiliki ;
Punwani, Shonit ;
Emberton, Mark ;
Moore, Caroline M. ;
Allen, Clare .
INSIGHTS INTO IMAGING, 2021, 12 (01)
[8]   Prostate Imaging Quality (PI-QUAL): A New Quality Control Scoring System for Multiparametric Magnetic Resonance Imaging of the Prostate from the PRECISION trial [J].
Giganti, Francesco ;
Allen, Clare ;
Emberton, Mark ;
Moore, Caroline M. ;
Kasivisvanathan, Veeru .
EUROPEAN UROLOGY ONCOLOGY, 2020, 3 (05) :615-619
[9]  
Lebel R., 2020, PERFORMANCE CHARACTE
[10]   Assessment of deep learning-based reconstruction on T2-weighted and diffusion-weighted prostate MRI image quality [J].
Lee, Kang-Lung ;
Kessler, Dimitri A. ;
Dezonie, Simon ;
Chishaya, Wellington ;
Shepherd, Christopher ;
Carmo, Bruno ;
Graves, Martin J. ;
Barrett, Tristan .
EUROPEAN JOURNAL OF RADIOLOGY, 2023, 166