Lyapunov functions for dynamically gradient impulsive systems

被引:1
作者
Bonotto, Everaldo M. [1 ]
Bortolan, Matheus C. [2 ]
Pereira, Fabiano [3 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Computacao, Campus Sao Carlos 668, BR-13560970 Sao Carlos, SP, Brazil
[2] Univ Fed Santa Catarina, Dept Matemat, Campus Florianopolis, Florianopolis, SC, Brazil
[3] Univ Fed Fronteira, Campus Cerro Largo, Cerro Largo, RS, Brazil
基金
巴西圣保罗研究基金会;
关键词
Impulsive semigroups; Gradient impulsive semigroups; Dynamically gradient impulsive semigroups; Isolated invariant sets; Lyapunov function; PULLBACK ATTRACTORS; GLOBAL ATTRACTORS; SEMICONTINUITY;
D O I
10.1016/j.jde.2023.12.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we present a comprehensive theory of generalized gradient and dynamically gradient impulsive semigroups. Our work establishes the equivalence of these classes, relative to a separated family of isolated invariant sets, similar to the non-impulsive case. However, the presence of impulses poses certain challenges, which we overcome by considering a slightly modified notion of attraction. Additionally, we provide an illustration of the theory by demonstrating that a reaction-diffusion equation-driven impulsive semigroup possesses a Lyapunov function. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 325
页数:47
相关论文
共 20 条
[1]  
[Anonymous], 1987, The Homotopy Index and Partial Differential Equations
[2]   NON-AUTONOMOUS MORSE-DECOMPOSITION AND LYAPUNOV FUNCTIONS FOR GRADIENT-LIKE PROCESSES [J].
Aragao-Costa, E. R. ;
Caraballo, T. ;
Carvalho, A. N. ;
Langa, J. A. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 365 (10) :5277-5312
[3]   Stability of gradient semigroups under perturbations [J].
Aragao-Costa, E. R. ;
Caraballo, T. ;
Carvalho, A. N. ;
Langa, J. A. .
NONLINEARITY, 2011, 24 (07) :2099-2117
[4]   Flows of characteristic 0+ in impulsive semidynamical systems [J].
Bonotto, E. M. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 332 (01) :81-96
[5]   Impulsive surfaces on dynamical systems [J].
Bonotto, E. M. ;
Bortolan, M. C. ;
Caraballo, T. ;
Collegari, R. .
ACTA MATHEMATICA HUNGARICA, 2016, 150 (01) :209-216
[6]   Semicontinuity of attractors for impulsive dynamical systems [J].
Bonotto, E. M. ;
Bortolan, M. C. ;
Collegari, R. ;
Czaja, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (08) :4338-4367
[7]   Global attractors for impulsive dynamical systems - a precompact approach [J].
Bonotto, E. M. ;
Bortolan, M. C. ;
Carvalho, A. N. ;
Czaja, R. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (07) :2602-2625
[8]   On Attractors of Generalized Semiflows with Impulses [J].
Bonotto, Everaldo de Mello ;
Kalita, Piotr .
JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) :1412-1449
[9]   ASYMPTOTICALLY ALMOST PERIODIC MOTIONS IN IMPULSIVE SEMIDYNAMICAL SYSTEMS [J].
Bonotto, Everaldo M. ;
Gimenes, Luciene P. ;
Souto, Ginnara M. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2017, 49 (01) :133-163
[10]   Impulsive non-autonomous dynamical systems and impulsive cocycle attractors [J].
Bonotto, Everaldo M. ;
Bortolan, Matheus C. ;
Caraballo, Tomas ;
Collegari, Rodolfo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (04) :1095-1113